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Errata for: Final Report, Advanced Centaur Explicit Guidance E_uation Stud_,

dated 1 October 1965, TRW Report 4222-60_3-KU000.

1. Page 2-12

2. Page 5-2

3. Page 5-37

4. Page 5-50

5. Page ll-1

6. Page ll-ll

In Figure i an arrowhead pointing down should appear on the

right most vertical heavy line. Without this arrowhead the

computation flow is ambiguous.

In Figure 3 change x' to X, y' to Y, and z' to Z. These

changes make the coordinate system shown on the right in

Figure 3 compatible with the discussion in Section 5.1.2 on

Page 5-3.

In the middle of the page change "probe flight predictor" to

read "free flight predictor".

In Equation (165) Caz should be changed to C' .
az

The primes should be removed from A_ A_, A'Z"

The second entry for ¢ should be deleted.

R} P. Davis
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1. SUMMAR Y

This report is the final report on a portion of the work performed

within Task VI under contract NAS3-3231. The work performed here was

a study to investigate the feasibility of using a set of generalized guidance

equations to direct a wide variety of future Centaur missions. The report

discusses why explicit guidance techniques are best suited to the purposes

of the generalized guidance required. It presents a set of ground rules

which essentially define the missions which are considered to fall within

the scope of a utility vehicle. Theoretical developments of the equations

recommended are given and performance results reported. A set of

computer requirements based on these equations is presented and the

implications of these requirements are discussed.

The conclusions reached in the study are:

a) It is possible to design a set of generalized equations

which will perform space tasks, and which can be

accommodated by present day "advanced" flight

computers.

b) The performance of these equations is comparable and

can exceed the performance of contemporary proce-

dures.

c) The current Centaur computer (-3 Librascope) is not

adequate to handle the requirements of such an

advanced set of equations. However, the possibility

exists that the current computer could handle a ver-

sion of the equations which had a reduced mission

accomplishment capability (i. e. the ability to perform

intercept guidance would be eliminated).
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2. INTRODUCTION

2.1 OBJECTIVES

The objectives of this study were, in the broadest sense, to

establish the feasibility of using a single set of generalized guidance

equations to direct all the missions which could reasonably be predicted

for the Centaur vehicle. It was further considered that this same set of

equations should guide all stages through payload injection. The feasi-

bility was to be evaluated within the context of the Advanced Centaur

Guidance System Study contract (# NAS 3-3231, Task VII which has as

its purpose the investigation of requirements for an improved version

of the guidance system for the Centaur vehicle with the appropriate lower

stages. The two areas in which major improvements are contemplated

are the inertial guidance hardware and the flight computer.

The guidance euqations and other associated guidance software

are a primary function in determining the flight computer requirement.

This is because a major portion of the computer memory is taken up

by the guidance software and the speed at which the guidance computations

must be made is a function of the complexity of the equations. The con-

tribution to the computer requirements dictated by the hardware interface

is more readily identifiable at a later stage in development when tradeoffs

among available computer space, the computer input/output capability and

the hardware characteristics can be made. Section 4. 1 however, gives

initial estimates for the requirements of these routines so that a gross

maximum computer sizing estimate can be given.

The contribution to guidance system error due to the guidance soft-

ware is generally small compared to the contribution of the measurement

error and therefore is not critical to the performance of an advanced system.

However, it is reasonable to place an accuracy requirement on any gener-

alized equations approach to be comparable if not better than the current

"special purpose" equations capability. Section 4 presents some of the

performance capabilities of these equations.
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For the above reasons, feasibility was evaluated primarily on the

basis of whether the guidance equations could be reasonablyaccommodated

in a computer currently existing or well along in development and of

acceptable size and weight for the Centaur applications.

The guidance computational routines presented and discussed in this

report are those which will form the major contribution from the guidance

software to the definition of the computer requirements and which are

unique to the guidance equation philosophy adopted. Other routines (such

as navigational initialization, alignment, calibration, etc. ) which in their

essential forms are not dependent on the form of the guidance equations

or which are dependent on the actual computer itself (such as mode

sequencing logic, diagnostic and self tests, etc.) are not discussed in

great detail. The contribution to the requirements of these routines can,

however, be estimated from previous experience and these estimates are

given in Section 4.1 together with overall computer requirements as

prescribed from this study.

2.2 WHY GENERALIZED EQUATIONS

This section will discuss why there do, indeed, exist valid

reasons for devoting considerable effort to the study of the use of general-

ized guidance equations; and also what general disadvantages can be

identified in connection with guidance software generalization.

A basic role of the proposed Advanced Centaur is that of performing

the functions of a highly reliable utility vehicle. An unavoidable implica-

tion of this concept is that sucha space system be capable of carrying out

many different classes of missions and, as a consequence, have a large

repertoire of space maneuvers (i.e. high flexibility). Further is should

be capable of performing any of these missions on relatively short notice

which means, ideally no system modification, but more practically, a

minimum of modification. Thus from the guidance software point of view

a single set of guidance equations, programmed once and for all in the

flight computer, capable of directing all of the proposed missions and

requiring a minumum of pre-flight targeting would meet these flexibility

and modification requirements admirably.
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A further advantage of using a single set of guidance equations is

the opportunity for continual evaluation of performance of the equations

thereby gaining extensive knowledge of their capabilities with the resulting

ultimate development of high levels of confidence in their operation. Also

in this connection high ultimate reliability can be achieved using a stan-

dardized set of equations.

A less concrete reason but of possibly greater long term significance

than the preceeding ones, is that the logical expectation of the eventual

routine use of highly operational multipurpose spacecraft for various and

sundry space duties (with the capability to meet changing mission require-

ments on very short notice or even in flight) will require a concommitant

generality in guidance software. It would thus seem that the accumulation

of experience in the formulation, evaluation, and use of generalized

guidance techniques now and in the near future would be of significant

value when it comes time to develop these advanced general purpose vehicles.

Indeed the Advanced Gentaur concept is an early version of such vehicles

and would be a logical place to perform early evaluation of generalized

guidance.

In terms of long term economy, the total program cost for a general-

ized approach should be less than for a mission-by-mission concept of

guidance equation development. This saving would come from the mini-

mization of not only total equation development "effort" but also from the

minimization of supporting software requirements such as targeting and

validation programs which are performed for each mission.

Another advantage of the particular generalized equation set presented

in this report is that they are not sensitive to changes in the booster sys-

tem configuration. Thus substitution of the Atlas booster vehicle by a

Saturn or Titan vehicle would require only a change of constants with per-

haps minor output processing to interface with the lower stage control

system and discrete sequencing. Some minor modification of the atmo-

spheric steering equations might also be appropriate when boosters other

than the Atlas are used. This point is discussed in Section 5.8.

The major disadvantage of the generalized approach is the necessary

complexity of the equations and the fact that their evaluation must include

proving that they function properly over the range of generality that they
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were designed for. This implies slightly more development and validation

effort than for a specific mission approach where software is tailored to a

smaller computer.

In summary then, the case for the use of generalized equations as

opposed to the mission-by-mission approach is supported by the following

attributes of the former.

a) High flexibility

b) High confidence levels in operation

c) High performance reliability

d) Lower total program cost

e) Low reaction time to booster configuration changes

f) Opportunity for accumulation of experience with highly

generalized techniques.

The disadvantages arise primarily from the complexity of the generalized

equations and the resultant level of initial effort needed to get the program

ope rational.

2. 3 WHY EXPLICIT EQUATIONS

In this sectiona brief discussion will be given on why explicit tech-

niques were chosen in preference to perturbative methods. Such a discus-

sion is appropriate since there exists a large fund of experience with the

perturbative methods, and for a given mission the explicit techniques

generally are more complex thus requiring more computer capacity and

greater computational speed.

First, then, it can be stated that with the advancing state of the art

in computer technology, the computer package has been reduced in

weight and volume with significantly increased computational speeds.

Thus, where in the past, hardware limitations militated against the use

of explicit techniques, today, with such large, high speed machines as the

TRW LEM AGS or UNIVAC 1824, it becomes feasible to take advantage

of some of the significant advantages of explicit guidance. These

advantages are principally that explicit equations are capable of being

more flexible and require far less precomputation (targeting).
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These two basic advantages arise from the fact that the inflight

equations used to compute the required burnout (or engine cutoff) condi-

tions result from using the fundamental principles of two body mechanics.

Thus injection into any specified geo-focal orbit is achieved by computing

the cutoff conditions utilizing the two basic equations,

r = P
1 + ecosf

v = _ 4- _
a

which can be recognized as the general equation for a conic and the vis-

viva energy equation respectively (see below for the detailed application

of these equations). Fundamentally then, all that needs to be provided

are the parameters of the conical orbit discussed (i.e., p, e, a) and the

same equations can be used to derive the cutoff conditions for circular,

elliptic, parabolic, or hyperbolic orbits. This contrasts to the pertur-

bative techniques where in general for each new conic attempted much

pre-flight computation must be carried out in order to first, obtain the

required nominal trajectory and burnout conditions and then, to determine

a set of partial derivatives which relate the nominal burnout conditions to

the required burnout conditions on a non nominal trajectory. Effectively

then, using perturbative techniques often requires extensive new guidance

software for many different objectives of a powered trajectory. In view

of the above discussion, the basic difficulties in attempting to formulate

generalized guidance equations using perturbative techniques, is that

there would need to be stored within the flight computer the pre-targeted

information for all of the maneuvers contemplated within the desired

range of flexibility. Thus the storage capacity of the flight computer

would quickly limit the degree of flexibility capable with the perturbative

equations. An alternative would be to store the pre-targeted information

in a ground facility computer, or to develope several special purpose

programs neither of which appears as attractive as the one set.

The case for the use of explicit equations is further supported when

it becomes necessary to have the guidance equations treat intercept and

rendezvous problems as well as injections into specified orbits. In the
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intercept case the problem is one of guiding the spacecraft in such a way

that it ultimately intercepts another vehicle (or point in space) whose

position in general, is changing rapidly. The procedure for performing

this type of maneuver using explicit techniques is to utilize the current

position of the spacecraft, the position of the target from ephemeris data,

and a time-to-intercept, in order to seek out a satisfactory intercept

trajectory. These computations are done in flight (in-flight targeting) and

the spacecraft can thus be put into the intercept trajectory from any

position it might find itself, provided other constraints are not violated

(e.g. propellant, perigee, etc.). If the same problem were to be solved

using perturbative methods, the approach would be to develop a nominal

intercept trajectory on the basis of a given set of spacecraft and target

vehicle conditions. From this trajectory the appropriate error coeffi-

cients would be generated (i.e., pre-targeted quantities) from which the

required cutoff conditions necessary to intercept from off-nominal

conditions could be computed. In order to expand the capability to inter-

cept from more than a single set of conditions, the error coefficients

would have to be computed for each condition desired and then stored in

the flight computer (or provision made to transmit the appropriate

coefficients when and as needed from the ground). The storage of these

coefficients in the form of time dependent polynomials, as is common,

would alleviate the storage problem but accurate fits, good over long

continuous periods or more than one injection opportunity, are difficult if

not impossible to obtain. Thus, here again flexibility would be limited by

storage and/or data retrival limitations. Furthermore even if it were

feasible to adequately process the great amount of data needed by perturb-

ative equations to approach the inherent flexibility of the explicit approach,

the pre-flight targeting effort required to generate all of this information

would make its usefullness highly questionable when there exist more direct

techniques, involving less arduous preparations which can performthe

same tasks.

An additional advantage of the explicit approach is that it is less

sensitive to deviations in the booster trajectory. The reason for this is

that the explicit procedures are not dependent on nominal trajectories and

generate guidance commands on the basis of whole state variables instead

of using approximate linear perturbation techniques.
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In summary, the advantages in using explicit equations over per-

turbative technique s are:

a) Higher flexibility

b) Much less pre-flight computation (targeting)

c) Less sensitivety to deviations in booster trajectory

d} Less computer capacity for simultaneous multiple

miss ion computation.

Thus, on balance, since the advanced hardware is available it seems

evident that explicit techniques, though involving more complex in-flight

computations at higher computing speeds, provide more flexibility and

and require less mission dependent pre-computation than perturbative

methods and are therefore preferable for space applications where fre-

quent and varied missions and maneuvers are required.

2.4 GROUND RULES

2.4. I Missions

The guidance equations presented in this report were designed to

provide guidance for a multipurpose payload injection system with the

Centaur as the upper stage and the Atlas booster system as the lower

stages. The missions which the equations were designed to direct are

the following, and can be carried out in an appropriate single or two burn

mode (or 3 burn in case of a synchronous orbit).

a) Boost and injection of a payload into an earth orbit.

b) Boost and injection of a payload into a translunar

trajectory.

c) Boost and injection of a payload into an interplanetary

trajectory.

d) Boost and injection of a communications satellite into an

earth synchronous orbit.

The use of the Atlas booster system in the development and evaluation of

the equations does not restrict the use of the equations to this booster

system.
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e) Boost and injection of a payload into an intercept

orbit for the purpose of effecting an ultimate rendezvous

with an orbiting vehicle (it is assumed here that the

Centaur would be passive, from at least the guidance

command point of view, for the midcourse and terminal

homing portions of the rendezvous).

These specific mission capabilities require a repertoire of

maneuver capabilities which permit the system to be readily adaptable to

future mission requirements. Thus, such advanced missions as satellite

interception and/or inspection, or a refueling and support flight for an

orbiting space station, for which there is presently no specific require-

ment, could be easily assimilated into the basic generalized capabilities

of the equation set. In actuality the equations were designed with these

advanced concepts in mind as well as those listed previously.

2.4.2 Limitations of the Equations

The equations as presented in this report are limited to the boost

and injection functions. In addition there is no provision made for handling

long term missions requiring external attitude updating or orbit deter-

mination because of the inherent limitations of the Centaur vehicle itself

to these applications.

2.4.3 Vehicle Configurations

As stated above the vehicle which served as the model for this study

was the Atlas Centuar configuration. Thus, as presented in this report, the

equations provide guidance for the Atlas Booster, Atlas Sustainer, and

Centaur stages. As such, the Atlas Booster was considered to complete

the penetration of the atmosphere and thus uses a separate steering

scheme designed to penetrate the atmosphere without violating the Atlas/

Centaur loading and heating constraints. However, this atmospheric

portion of the generalized equation set is designed as a modular component

of the guidance computation system and may easily be repl?_ced with another

atmospheric steering scheme to accommodate changed ascent constraints.

In addition, it was considered appropriate to consider the use of the Cen-

taur with other booster packages (for example, Saturn or Titan), which might

or might nothave their own proven and operational atmospheric steering

schemes. Thus, in addition to having the atmospheric steering modular,
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this initial guidance phase may be obviated altogether so that the general-

ized equations equations as presented in this report would not be initialized

until the lower stage guidance system had completed its assigned function.

The exo-atmos phe ric portion of the guidanc e equation set is de signed nominally

to begin during Atlas Sustainer flight (anywhere from sustainer ignition on)

and continues to completion of the Centaur role. Thus the exo-atmospheric

equations are nominally designed to act over two stages (this includes re-

starts of the Centaur engine), though, as suggested above no difficulty

arises if it is desired to guide only the Gentaur stage with the exo-atmo-

spheric equations. The extension of the exo-atmospheric guidance equations

to cover more than two distinct stages can be easily made, though, admit-

tedly this would require a modification of the steering equations as presented

in this report. It should be pointed out however, that this limit on the gen-

erality of the equations is not at all pertinent to the stated contractual

objectives of this study, which were directed toward the Atlas/Centaur con

configuration. Only when the question of the extent of "generalization" is

posed or the prospect of extension of the equations to systems using more

stages than Atlas/Centaur is considered, need these limits be defined or the

means for the extension of the generality be considered.

Z. 5 BASIC METHODS

Before giving detailed derivations and descriptions of the explicit

equations, a brief and general summary of the methods employed in

these equations is given here so that the results and conclusions,

presented in the next section, may be more fully appreciated.

Figure 1 shows the guidance computation flow chart with the main

computational routines contained in the generalized set. Once this

guidance program is initiated it automatically directs the particular flight

to the completion of payload injection. The initial portion of the program

is that of loading the various guidance inputs. These inputs fall under

the following general categories.

a) Various constants related to the vehicle and its

respective propulsion system

b) constants needed to sufficiently define the flight orbits

to be achieved (i.e. orbital parameters, flight plane

orientations, etc.),
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c) constants which properly initiate maneuver sequencing
logic,

d) constants associated purely with the guidance equations
themselves such as initial values for starting iterations,

proportionality constants, biases, etc., and

e) constants which define certain tolerances such as

propellant pads and injection true anomaly limits,

etc.

The actual guidance computations begin with the atmospheric steer-

ing phase which continues until the sensible atmosphere is penetrated

sufficiently to permit employment of the exo-atmospheric equations. The

equations used for this phase are designed to offer acceptable loading

characteristics for the Atlas/Centaur structure and fall under the general

category of velocity steering methods.

At a predetermined altitude the exo-atmospheric equations assume

guidance of the flight and continue in this role through payload injection.

The explicit scheme used for this portion of the flight consists of a pro-

cedure which divides logically into two parts:

a) Computation of desired cutoff conditions (i. e. velocity

only or velocity-position constraints)

b) Incorporation of the cutoff constraints for the inflight

derivation of an explicit steering regimen which will

meet these constraints.

In other words, the procedure initially determines the cutoff condi-

tions necessary to meet the current maneuver objectives, and then derives

the appropriate steering commands. Since the nature of the powered

flight problem does not permit of a sufficiently accurate analytic solution

(of any practical importance) until the powered flight time becomes quite

small, an iterative procedure is used throughout the powered flight

whereby successive approximate solutions are carried out which converge

to the sufficiently accurate solution as the burn time decreases. Thus,

the iteration loop would run as follows:

a) A cutoff position is estimated.

b) From (a) the corresponding cutoff velocity is

computed.

c) From (a) and (b) the appropriate steering signal is

generated.

d) From (b) the powered flight burn arc remaining to

cutoff is estimated from which the cutoff position

estimate is made (i.e. return to 'a').

2-10



This loop is shown in heavy lines in Figure I.

A "burn angle predictor" within the iterative loop is used in the

process whereby the cutoff conditions are predicted. This computation

is made by utilizing the computed angular momentum and position at

cutoff and the current angular momentum and position in conjunction with

the estimated time to go until cutoff.

The computation of the desired cutoff conditions is made by one of

two routines depending on whether an intercept maneuver is being

carried out (e.g. rendezvous, etc.) or whether an injection into a pre-

targeted conic is desired (e.g. parking orbit, elliptic earth orbit, escape

hyperbola for interplanetary missions, etc.). The former is the block

entitled "Intercept Targeting and Required Velocity Computation" and

the latter is the block entitled "Required Velocity for Specific Conic".

The "Intercept Targeting and Required Velocity Computation" seeks out

a propellant optimized intercept trajectory on the basis of the estimated

cutoff position and the position of the target at intercept (see Figure 2).

The ephemeris data of the target vehicle or body, obtained from the flight

computer, together with a "Free Flight Prediction" routine (see Figure 2)

is used to obtain the position of the target at intercept. Thus, in-flight

targeting is carried out for intercept maneuvers. The "Required Velocity

Computation for Specified Conic" routine uses the pre-launch targeted

parameters of the desired conic to compute the required cutoff conditions.

Thus, with a given estimate of the cutoff position specified, the corre-

sponding cutoff velocity is determined by two-body equations.

With the cutoff conditions specified, the steering equations

(E-steering) then derive the corresponding steering commands. This is

done by solving the corresponding boundary value problem using the

current position and velocity andthe desired cutoff conditions at the

specified end points. The steering commands are developed as attitude

errors with respect to the vehicle body axes and transmitted to the control

system as attitude rate commands.

Engine cutoff is commanded by the extrapolation of a second degree

curve obtained by a fit to the "velocity to be gained" values just before

cutoff. Thus, when the time until cutoff falls below a specified small
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value the last three "velocity to be gained" values are used to predict

when the velocity to be gained will be zero and the engine is shut down at

this predicted time.

With the accomplishment of engine shut down, the guidance equations

continue to function (that is, provided the role of the equations for the

mission has not been terminated) in order to determine when the next

restart should occur. This computation is designated in Figure 1 as the

"Coast Trajectory Termination Computation". The criteria for restart-

ing are functions of the objectives of the ensuing powered flight phase and,

depending on these objectives fall under one or more of the following:

a) The ensuing burn period (or periods) can be carried
out within the limits of the propellant supply available.

(This is of course a general requirement.)

b) The ensuing burn period should terminate with an

injection within certain given true anomaly limits.
This is the injection near perigee constraint.

c) The ensuing burn period should terminate with a

position match accurate to within certain required
limits.

d) The ensuing burn period will terminate in an orbit

whose perigee is above a certain altitude.

This coast trajectory termination computation utilizes the "burn

angle prediction" routine to predict the cutoff conditions of the subsequent

burn phase and is designed to terminate parking orbits and unpowered

intercept trajectories.

The role of these guidance equations is automatically terminated by

an executive routine which issues the guidance termination discrete in

accordance with the instructions loaded into the flight computer in the

form of appropriate input constants.
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3. PRE-FLIGHT ACTIVITY REQUIREMENTS

As discussed above, a primary aim in the design of these equations

was the minimization of pre-flight mission-dependent computations. The

use of explicit techniques goes far in accomplishing this objective as

previously noted. However, even with the reduction of the pre-flight

targeting effort, the equations to be presented in this report require a

significant amount of pre-computed data. This section discusses the

general extent of these requirements.

3.1 LAUNCH AZIMUTH DETERMINATION

It is assumed that the launch azimuth variation with launch time has

been predetermined and is available to the vehicle guidance system as an

input when the liftoff time has been established. This is the procedure

used in the current Atlas/Centaur configuration. Thus, part of the

development of an operational system using the guidance philosophy

presented in this report, would be the determination of a body of launch

azimuth information correlated with particular mission characteristics

and launch times. This launch azimuth information might be made

available in say, tabular form to a human controller, who, when the

launch time were established, would manually "dial" the proper launch

azimuth into the vehicle guidance system. Alternatively the launch

azimuth information could be provided in the form of launch time

dependent polynomials, programmed either in a ground based computer

or in the flight computer (the former seems more attractive from the

standpoint of limiting on-board computer capacity requirements). With

these polynomials the Munch azimuth computation would be a part of the

automatic guidance system with no need for the human intermediary.

A brief look was taken at the advisability of attempting to develope

an analytical non-empirically derived expression for the launch azimuth

which would be a function of the launch time and the desired orientation

of the initial orbit plane. Such a procedure was developed on a preliminary

basis and it was found that it would, in general, require the knowledge of

the orientation of the observed orbit, or equivantly its unit normal. This

orientation is very strongly as sociated with launch window limits which in
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turn are based on paylaod capabilities. These limits must be determined

before launch since the guidance equations are not sufficiently accurate at

launch to predict payload capability of the boost and injection system. The

process of determining these limits however involves the generation of

acceptable launch azimuth data. It would therefore appear that the utiliza-

tion of this launch azimuth information obtained in the activity described

above, in the form of tables or polynomials would be more economical

than including additional logic in the equation package to compute what

has already been determined elsewhere. Thus for these reasons it was

concluded inadvisable to include an explicit launch azimuth determination

routine.

It might be pointed out however, that if the guidance equations were

made capable of predicting payload limits with any precision at launch

than an explicit routine for launch azimuth might then become appropriate.

Any continued development in the area of generalized guidance equations

should consider this possibility.

3. Z PRE-FLIGHT TARGETING

By targeting, is meant here, the generation of the proper values for

those quantities that appear in the guidance equations and which are

dependent on the nature and objectives of the mission to be flown and the

vehicle configuration. In dealing with explicit guidance equations the

targeted quantities are principally those which describe the orbit to be

achieved rather than coefficients for required velocity and/or steering

polynomials as in perturbative and open loop techniques. The pre-flight

targeting effort for the guidance equations discussed in this report there-

fore falls into the following categories:

I) Determination of Atmospheric Steering Coefficients (See

Section 5.8): For a given vehicle this determination

could be done only once which would establish a standard

ascent through atmosphere profile.

2) Determination of Exo-Atmospheric Steering Biases

and Computation Switching Parameters {See Section

5.2): These are quantities which detailed per-

formance analyses (See Section 6) indicated would

optimize the performance of the equations. They

compensate for the effect of staging discontinuities

and specify when the switching between different steer-

ing modes should be accomplished. The values for

these quantities were found to be generally mission

dependent.
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3) Determination of Desired Orbit Defining Parameters

(See Section 5.3): These parameters are orbit

parameters such as eccentricity, semi-latus rectum,

etc. , orbital inclinations, perigee magnitude and

directions, target vector, and various other quantities

which appear explicitly in the required velocity

equations and are highly mission dependent.

4) Target Ephemerides: As explained in the body of the
report (See Section 5.3.1) the guidance used to carry

out intercept maneuvers requires a knowledge of the

ephemeris of the target. Thus for such intercept

maneuvers the appropriate ephemeris data would need

to be determined and provided to the flight computer

prior to launch.

5) Other Miscellaneous Mission Dependent Quantities:

These are such things as control system gain constants

which might be vehicle configuration and therefore mission

dependent, satisfactory propellant pads, injection

true anomaly, limits, etc.

3-3



4. SUMMARY OF RESULTS

4. I SUMMARY OF COMPUTER REQUIREMENTS

As stated previously the principal criterion for establishing the

feasibility of using a highly generalized set of guidance equations is how

well such a set of equations can be accommodated by an advanced flight

computer which is judged to be within the current state of the art. Three

such computers are:

MIT/Raytheon Apollo Computer

Univac 1824

LEMAGS Computer, MARCO 4418 of TRW Systems

The LEM AGS is representative of these general purpose high speed

machines so that requirements imposed on this machine by the generalized

guidance equations of this report were taken to establish feasibility from

the computer requirements standpoint.

Table I summarizes the results of capacity and timing requirement

estimates made on the LEM AGS for the guidance equations alone. The

estimates were made from the guidance equation flow charts shown in

Section I0. The entries in Table I are on a flow chart by flow chart basis.

Flow charts 2, 3, and 4 comprise the self-targeting routine for intercept

guidance. The table shows timing estimates for the cases when this loop

is deleted, when three cycles around this loop are made and when 15 cycles

around the loop are made. These different values are given in order to:

a) show what the timing requirements would be if the self

targeting loop were removed thus removing the ability

of the equations to perform intercept guidance.

b) show the timing requirements during the powered portion

of an intercept maneuver where three iterations around

the loop are made.

c) show the timing requirements during the coast period

preceding the powered portion of an intercept maneuver

where as many as 15 iterations around the loop are

made.
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Table 1 also gives the total storage locations and timing requirements of

the current Centaur -3 Librascope computer.

It can be seen from this table that the -3 machine requires some-

what more locations than the LEMAGS machine. The reason for this is

the fact that the -3 is a drum machine and has a limited indexing

capability. This means that different coding procedures are employed and

additional logic must be provided in the -3 machine to perform the indexing

function. The -3 computer has a total of 2800 locations available so it can

be seen that programming the total guidance equation package barely leaves

room for any of the other computer functions. If the self targeting feature

of the equations is deleted (which eliminates the intercept guidance capa-

bility) there are about I000 locations available for other functions, but the

loss of the intercept capability constitutes a serious retreat from the

position taken in the ground rules section of this report. Table I also

indicates that the timing requirements imposed by the complete equation

package are beyond practicality. This conclusion is supported by past

experience and more explicitly, by a study entitled "Preliminary Study of

Explicit Guidance Control System Interface for Atlas/Centaur", repro-

duced as Appendix A. Reference to this study shows that in order to

preserve Atlas/Centaur control system stability, sampling periods of

greater than 5 seconds can not be tolerated. Thus the requirement of

more than 13 seconds indicated in Table i is quite out of limits. Note

however, that if the self targeting feature of the equations is eliminated,

the timing requirements are less than 3 seconds so that again, for a

version of the equations which did not include an intercept guidance

capability, the current Centaur machine might be acceptable.

In summary then, Table i shows that:

a) the current Centaur -3 Librascope computer is not

adequate to handle the complete generalized equation

package.

b) the current Centaur computer might be able to handle

a reduced version of these equations (see the discus-

sion below associated with Table g for a more com-

plete answer to the question).
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c) from the standpoint of timing requirements the LEM
AGS (or a similar computer) can easily do the job,

based on the requirements put forth in the study dis-
cussed in Appendix A.

Whether the LEMAGS and similar machines can meet the require-

ments with respect to instruction locations is discussed below in con-

junction with Table Z.

Table Z gives an estimate of the total memory locations needed to

program the equations of this report plus the other computations usually

required of the flight computer. It can be seen from the table that the

guidance equations form the largest single part of the total requirement

but that the other functions are by no means insignificant. The table is

given in terms of four options. These options are as follows:

Option I

This option includes those computational functions which this report

considers advisable to include as the responsibility of the on-board com-

puter. Since the Centaur GSE is now being modified to include a separate

ground computer to relieve the inflight computational load, it is a distinct

possibility that that capability might be carried over to an advanced Centaur

also. Some of these pre-flight computations are alluded to in the text of

the report (e. g., the generation of the transformation from the equatorial

oriented inertial to the platform coordinates, the computation of launch

azimuth, and the calibration and alignment procedures, etc. ). It was also

felt that since it is, at present, difficult to identify a real requirement

for the processing of externally received data, the memory requirements

for these computations should be considered only for a maximum capability

system.

Option II

This option included all the computer functions which might con-

ceivably and reasonably be performed by the flight computer. This option

can be viewed as a maximum system which provides an upper bound to

the total computer requirements for an advanced Centaur guidance system.

Option III g_ IV

Reference to Table 1 shows that the largest contribution to the com-

puter memory requirements is due to the self targeting or intercept

4-4
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guidance feature of the guidance equations. Option III and IV gives the

total computer requirements for the cases of Option I and II respectively

if the intercept guidance capability is deleted from the equations. These

last two options i11ustrate, in terms of practical requirements, the price

paid for incorporating intercept guidance in a generalized set of equations.

The requirements specified in these last two options also gives an indi-

cation of how far the guidance software can be modified before the capa-

bilities of the current Centaur computer begin to be exceeded (see below).

Table 3 gives a summary of the characteristics of three representa-

tive advanced computers and the current -3 Librascope Centaur computer.

A comparison of the data in Table 2 with the computer characteristics

given in Table 3 shows that any of the advanced computers can accommo-

date the memory location requirements of even the maximum system of

Option II. However, it can be seen that only with the most extreme

"squeezing" could the minimum requirements of Option Ill (which has no

intercept guidance capability) be accommodated by the current Centaur

computer. In this connection it should also be pointed out that the current

Centaur computer has available only about 1800 memory locations for

in-flight computations, the remainder of the total 2800 being used for pre-

flight computations. In addition, the current Centaur configuration does

not provide a feasible method for continuous switching from one or the

other of these two portions of the memory, so that even if the "squeeze"

could be accomplished the computer would need to be modified to provide

facile access to either of these sets of memory tracks.

In summary then, from the information given in Tables I,

the following conclusions can be stated.

I)

z)

3)

Z, and 3

The total computer requirements for an advance guid-

ance system using generalized explicit guidance

equations can be met by any one of the three advanced

computers of Table 3.

The current Centaur computer could not accommodate

a system which employed generalized explicit guidance

techniques and which included a capability to perform

intercept guidance.

The current Centaur computer would possibly accomo-

date a system which did not have the intercept guidance

capability, but only under the following conditions
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a) extreme economy in computer function requirements,

equation formulation and memory utilization.

b) Modification of -3 computer to allow use of total

memory for inflight computations.

4. 2 SUMMARY OF PERFORMANCE RESULTS

This section gives a summary of the results of the performance

analyses made on the guidance equations presented in this report. The

performance results were obtained from simulations using TRW System's

N-Stage program. The current Atlas/Centaur vehicle model using an

A/C-8milestone was used, with various sections of the equations perform-

ing appropriate guidance functions. Time and resources did not permit

the evaluation of all of the features of this equation set, but an effort was

made however to simulate those segments of the set which would give

indications of the capabilities and accuracies obtainable. Also the

simulations were used as development tools in the design of certain

features of the equations.

The portions of the equations which were simulated and for which

results are quoted in this report are:

l) Injection into a 90 n. mi. circular parking orbit

2) Injection into a hyperbolic escape trajectory

3) Injection into an intercept trajectory for interception

of a low altitude satellite

4) Injection into a translunar trajectory using intercept

guidance.

Table 4 summarizes the performance results obtained with the

simulations. The table by no means gives all of the results obtained,

but does give those results which it is felt demonstrate that the

accuracy capabilities of the equations are quite satisfactory. For more

complete presentation and discussion of the results, the results section of

the report should be consulted.
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5. THEORY AND DERIVATIONS

5. 1 DESCRIPTIONS OF COORDINATE SYSTEMS

5. I. 1 Inertial Coordinate Systems

5. I. I. 1 Platform Coordinate System

The inertial coordinate system employed to implement the equations

presented in this report can be chosen as any which is convenient for the

purpose to which the equations are to be used. For the purpose of the

Atlas/Centaur it is convenient to use a u-v-w inertial coordinate system,

which is an orthogonal triad related to the accelerometer input or inertial

platform axes. The origin of this system is located at the center of the

earth. The w-axis is along the negative of the measured gravitational

acceleration vector at the launch site. The u-axis is assumed to be

aligned to the particular alignment aximuth of the pad to be used (say

105 ° for pad 36A or 115 ° for pad 36B at Cape Kennedy) and the v-axis

completes the set so that the u-v plane is parallel to the launch site

horizontal plane at "go-inertial."

5. I. I. 2 l_tch Plane Oriented Inertial

For the Atlas/Centaur the booster pitch profile shaping is assumed

to be constant across both the launch window and launch opportunity,

although the azimuth of this plane is variable across both the window and

opportunity. It is therefore convenient during booster steering to use

variables expressed in a coordinate system which has two axes deflning

a plane co-incident with the pitch plane and the third axis normal to the

pitch plane. This is accomplished by defining a second coordinate sys-

tem the u'-v'-w' system which is obtained by rotating about the w-axis

an angle equal to the angular difference (A u) between the platform azi-

muth (u-axis) and the trajectory azimuth. The latter is determined at

the actual time of launch. The u' axis then lies along the intersection of

the pitch plane and the launch site horizontal plane and the v'-axis

completes the right handed set. Both of these coordinate systems (the

u-v-w and u'-v'-w') are shown in Figure 3.
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5. I. I. 3 Equatorial Oriented Inertial

A third coordinate system should be mentioned at this point. This

is the coordinate system in which pre-determined, mission describing

vectors are initially expressed. These vectors (_, iRp, j, rT--see

below for definitions) are determined prior to launch and must be con-

verted to the platform coordinate system after this latter system is

determined by the launch time. The coordinate system in which these

vectors are assumed to be given is earth centered with the z' axis the

polar axis and the x'-y' plane the equatorial plane. The specific orienta-

tion of the x' and y' axes in the equatorial plane is not essential to the

purposes of this report. It will be seen in Section 5. 7 that this is the

coordinate system in which the numerical integration is carried out for

the solution of the navigational parameters.

5. I. 2 Earth Fixed System

To assist the development of load relief capability and to preclude

the possibility of excessive loads or heating, it is useful to formulate the

atmospheric steering law (see Section 5.8) in terms of quantities

measured with respect to the nominal motion of the air mass. This is

easily done by using a coordinate system, X-Y-Z, which translates with

the air mass. To reduce position variable scaling problems, the origin

of this system is placed at the launch site. At launch, the axes of the

X-Y-Z systems are parallel to the u'-v'-w system axes respectively but

the origin of the X-Y-Z system has, forever after launch, a velocity

with respect to the u'-v'-w system which is equal to the launch site

inertial velocity (Vo') at liftoff. * This X-Y-Z system is shown on Fig-

ure 3 t' seconds after liftoff.

5. I. 3 Exo-Atmospheric Coordinate System

The exo-atmospheric computational coordinate system _lenceforth

called the computational system) is shown in Figure 4. The x, y, z

*This is not truly an earth fixed system since the origin in an earth fixed

system could not execute rectilinear motion as does the X-Y-Z axis

after launch. However, for the purposes of atmospheric steering here,

the motion of the X-Y-Z system approximates the motion of the air mass

to a completely adequate degree.
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system is a rotating right handed frame. The z axis is along the projec-

tion on the desired flight plane, of the instantaneous position _¢ector r of

the vehicle. The y axis is normal to the desired flight plane and the x

axis completes the right handed set. The desired flight plane is defined

by specifying a unit vector j which is normal to the desired flight plane.

In terms of r, j and Vthen,

X = 0

-- "7"

y = r" j

V
x

V
Y

Yz

z = _/rz . yZ

k_ r-Y2
z

= j_k

= V •

= v" J

=_._

(i)

where r, j and _ are expressed in some convenient inertial coordinate

s ys tern.

5. 2 EXO-ATMOSPHERIC STEERING EQUATIONS (See flow chart 6)

This section of the report gives a derivation of the upper stage

steering equations, i.e. , the exo-atmospheric explicit steering equations

used for the Atlas Sustainer and Centaur Stages. These equations are

explicit because they are completely independent of any reference trajec-

tory and require no nominal trajectory related pre-computed coefficients.

The derivations begin by assuming that the second derivatives of

the y and z coordinates of the computational system are linear functions

of time, except for a jump change in _ at the staging point. These

quantities can thus be expressed as
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= A + Ct (Z}

= B ÷Dt 0 -< t -< T s (3}

= B1 +Dr T < t < T {4}
S

In these expressions time t is measured from the present time, T is thes

time to go to staging, and T is the time to go to cutoff. It is assumed

then that the coefficient B is used during the sustainer burn, and that B 1

is used during the Centaur burn.

If the above equations are integrated once, the results are

and

tz

_r(t) - _r(0) = At + CT (5)

Dt 2
_,(t) - _(0} = Bt +T (o-< t -< Ts) (6}

t z
_(t) - _(0) : B T s + BI(t-Ts) + D-_ (T s < t -< T} (7)

Evaluating these expressions at t = T, the results are

T Z
YD - 7(0) : AT + C-_- (8)

and

+B (T- +D Tz
rD " _'(0} = B T s 1 Ts ) -Z- (9}

where it has been assumed that _(T) = YD' and _(T) = rD' i. e. , the final

values are equal to the desired values.

If the expressions for _{t} and _{t} are integrated from t = 0 to t = T

the following equations can be obtained:

T 2 T 3

YD- y{O) - _r{O} T : A-_+ C T {10)
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and

I 2,2T3rD - z(0) - _(0) T : B Ts T - +-_ iT - T + D--6 (II)

where it has been assumed that y(T) = YD and z(T) = r D.

Further simplification occurs if it is assumed that

B 1 = B + AB (IZ)

where ZIB is a known quantity. The in-plane equations then become

rD £(0) - Z_B (T-Ts) = B T + D T2- _- (13)

ZIB (T_Ts)Z T 2 DT 3rD - z(0)- _(0) T - --_ = B-_- +--_ (14)

The right hand side of these equations are now of the same form as

the yaw equations, i. e. ,

T 2
_rD- y(0) = A T +C -_- (15)

T 2 T 3

YD - y(0)- 9(0) = A -_-+ C _ (16)

These equations can now be solved in two separate ways. If both

position and velo'city constraints are to be met then the pairs of equations

must be solved simultaneously, which gives

and

B 6 lrD
T z

ZIB (T- Ts )z ]z(0) - _(0) T - -_-

(17)
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There is no point in solving for the C and D coefficient because at

t = 0 they drop out of the expression for y and _.

On the other hand, if only the velocity constraint has to be met, then

the position equation can be ignored, which leads to the expressions

_D" &(0) T AB (T-T) (19)
B = T D2 T s

and

#D - y T (20)
A - T C_-

In these expressions it has to be assumed that C and D are known

quantities. In the flow charts is has been assumed that C = 0, but the

D coefficient has been included. It was felt that there might be some

advantage to using a non-zero D coefficient, e. g. , in order to improve

efficiency.

The mechanization given in the flow charts includes both the

equations for position and velocity constraints (v 2 = 0) and the equations

for velocity constraints only (v 2 = I).

The equations of motion in the rotating computational frame are

= aT Gay r
(Zl)

and

_____+
= aT Caz 3

r

2
v
x

(22)

where C and C are the direction cosines between the acceleration
ay az

vector and the ] andk axes, respectively.
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These equations can be solved for C and C as follows
ay az

Cay a T _ rB
(23)

V

_ 1 + zC
az am 3

I r

(24)

where it has been assumed that_ = A and z = B.

The reason for assuming that there is a jump change in B at the

staging point can now be explained. It has been found from calculus of

variation solutions that the direction cosine, Caz, should be continuous

at the staging point. However, if B is continuous then the change in aT

at staging will cause a discontinuity in Caz. Hence, a discontinuity must

be introduced into the B coefficient which vail just cancel the discontinuity

in aT. In order to have continuity in Caz at staging we must have

(aTl - aT0) Cazlt=T = B1 B = AB (25)
s

where aT 1 is the acceleration at the beginning of Centaur and aT0 is the

acceleration at the end of the sustainer stage. In order to solve for L_B

it is necessary to know C I Since the burning time of the sus-az t=T "
S

tainer stage is fairly short, it can be assumed for the sake of simplicity

that

Caz {t:T = Caz{ t=0
S

The equation which was finally mechanized was

&B = K91Caz
(26)

where

K91 = (aTl- aT0)
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The entire discussion up to this point has assumed that t = 0 was

some time prior to staging. Essentially the same results are obtained

if t = 0 is subsequent to staging, except that it is necessary to assume

AB = 0. This assumption removes all the terms containing T s from the

expression for A and B, which might be expected.

Now it remains to obtain a suitable expression for the reciprocal of

the thrust acceleration, 1/a(t), and the time to cutoff, T. For l/a(t).

a suitable expression, which will not blow up for low or zero sensed-

accelerations, and which takes advantage of the filtering effect of an

integration, can be derived in the following way.

Let V be the total thrust velocity accumulated by the stage up toc

the time of the current computation, t. Then

t

Vc(t ) = / aT(t) dt (27)

O

where t = o is the time of initial ignition of the engine. From the rocket

model chosen we have that

V
= e (?_8)aT(t) m

O

rh

which when substituted into Equation (27) and integrated gives

t "
V = -Ve In 1 --_-_

C

rh

(Zg)

or

-t _ ____c
V e

m
o

rh

- e (30)
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Dividing both sides by V and noting thate

V e aT(t)
(31)

and

m o 1

rhV
e

aT(o)
(32)

we get

V
C

1 1 Ve

aT(t ) - aT(O ) e
(33)

Expanding the exponential in a Taylor series the expression becomes

finally

1 = 1 [1 -"_C + -_\Ve/aT(t) aT(O) V e

+...]

4 5 6

- lz--5 7i5

(34)

To determine the time to burnout, T, the scheme used must account

for the fact that two different stages* may be used to null a given V .
g

That is to say, the explicit guidance equations have been developed so as

to be able to direct the flight from some time during the sustainer stage to

"_The scheme can be used to guide more than two stages with a few simple
modifications provided that the thrust velocity capability of all but the

last stage can be specified prior to flight.
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ultimate burnout of the Centaur stage. Thus the scheme for computing T

is developed as follows.

From the rocket model, we have that

Vrh

(35)aT(t) = re(t)

But, the vehicle mass at first stage burnout, mf, the present mass, re(t),

and the mass rate are related by

re(t) = mf ÷rnTs (36)

where T s is the time to first stage burnout.

(35) and inverting we have

Thus substituting (36)into

1 mf T
- + S

aT(t) Vern V e
(37)

and solving for T ,
S

T
S

V e mf

- aT(t) rh
(38)

gives the time to burnout of the first stage.

The time to go for cutoff of the second stage can be computed as

follows. Rearranging Equation (28) we have

aT(t ) = Verh_
m -o m2t

(39)

Integrating from the present (t = o) to cutoff of second stage (t = T)

T

V rh_ m
v(T) - v(o) = / e dt = V In o

o mo . rh2t e mo - rh2T

(40)
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But

v(T) - v(o) = V
g

(41)

where Vg is the velocity to be gained by the second stage. Thus

V = V
g e

m

In o

m ° - rh2T

(42)

or, expressed in exponential form

V 1 rnzT
exp _ __K_ = 1

Ve2 m o
(43)

where the subscript 2 refers to the second or Centaur stage.

Expanding the right hand side in a Taylor series and performing

some rearrangement we get

m V 1 Vg _ + -...

T - rhz°vezg 1 --_ Ve \ e2/

(44)

Then, noting that

aT(t)
_ rn 2 Vez

rn
o

Equation (36) become s finally

v[<Vl+l:V iv l]I + ... (45)
T aT--_ , _ %2 r_Ve2/ _\ e2/

When the two stages are used consecutively to null a given V Equa-
g

tions (38) and (45) are used if the computation is made during a first stage

burn. That is, the time to go, Tg, until second stage cutoff is
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T =T +T =
g s aTl(t) ml aT [ 2

v___K_+ _ VezVe z

Z

(46)

where subscript

I -_ first stage

Z --" second stage

a_ = the initial acceleration of the second stage

If the computation is made durtug a second stage burn, then Equation (45)

is used alone with the reciprocal of the acceleration given by Equation (34).

•It might be noted here that in the development of these equations it

has been assumed that the sustainer stage will never be called upon to

complete the hulling of a V which has been computed using the explicit
g

(or exo-atmospheric) guidance equations. This means that the equations

restrict the use of the sustainer to that of a part of the boost system only

with the Centaur stage always performing the actual payload injection.

However, minor modifications to the equations presented here would pro-

vide the capability to perform missions in the suborbital _ start mode.

Equations (34), (38), (45) and (46) allow the determination of any of

the direction cosine commands given by Equations (Z3)and (2.4)required

by maneuver constraints. The Equations (34), (38), (45) and (46) in

general give expressions by which the direction cosines are given as a

function of the time from the computation. Thus, ideally it might be pos-

sible to compute the A and B coefficients only once and have explicit

expressions from which the direction cosine requirements could be deter-

mined from the start of guidance to shut down. In practice, however, the

determination of y(T), y(T), z(T) and z(T) involves certain inaccuracies

which, as cut off is approached, become smaller and smaller (see below).

_Suborbital coast between sustainer burnout and Centaur ignition.
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Thus the A and B coefficients accordingly are initially inaccurate and

must be recomputed periodically if satisfactory terminal conditions are to

be achieved.

5.3 EQUATIONS FOR PREDICTION OF CUTOFF REQUIREMENTS

The steering equations developed above require for their imple-

mentation two or more specified cutoff conditions. That is, depending on

the manuever to be performed, at least two of the four quantities, y(T),

y{T), z{T), z(T), must be specified. The means of obtaining these

quantities is described in this section.

Essentially two routines are used to find the cutoff requirements.

One routine is used for intercept maneuvers, where the Centaur is

required to inject itself into an orbit which will intercept a given point

in space at a given time. This routine is used for the on-board targeted

intercept portions of rendezvous missions, Syn-Com missions, and for

translunar missions. The second routine is used where the desired orbit

is one which can be targeted prior to launch. These are taken to include,

parking orbits and other earth orbits, interplanetary and pre-targeted

translunar trajectories. The first routine will be called the "Optimum

Intercept Targeting Routine" and the second the "Specified Conic Routine."

These two routines are described below.

5.3. 1 Optimum Intercept Targeting Routine (See flow charts 2, B and 4)

5.3. I. 1 P-Iteration

This routine assumes two body dynamics, and specifies a conic on

the basis of two points in space and a free fall time T 12' between the two

points. The computation proceeds by first assuming a value for hD, the

desired angular momentum on the transfer ellipse, and computing the

corresponding free fall time to go from rD to F T. This free fall time is

compared to the required difference, tT - tD. Newton Raphson iteration

is then used to find the value of h D which causes the predicted free fall

time to agree with (tT - tD) , once convergence has been obtained the

desired velocity, VD' is computed from the parameters of the computed

transfer orbit.
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The particular algorithm used here for computing free fall time

was developed at TRW Systems Group by F. A. Evans. It has the advan-

tage of being valid even for zero eccentricity orbits. The development of

these equations proceeds directly from Kepler's equations, which gives

the free fall time between _D and _T as

whe re

T,2  [MT (47)

1V[T = E T - e sin E T (48)

M D = E D - e sin E D (49)

where E D and E T are the eccentric anomalies at r D

on the transfer orbit.

The above equation can be rewritten as

V12 = _ [AE - e sinET +e sinED]

where

and r T respectively,

(50)

AE = E T - E D

Ordinary trigonometric identities then give

cos AE = cos E T cos E D + sin E T sin E D

sin AE = sin E T cos E D - cos E T sin E D

(51)

(SZ)

The following selections from astrodynamic theory are then quite

us eful

COS E =
e + cos f

1 + e cos f
(53)
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V_ - eZ'sin f
sin E = (54)

I + e cos f

where f is the true anomaly.

If these expressions are used in the cos AE and sin AE equations the

results are

cos @ + e cos fT + e cos fD + ez " (e sin fT ) (e sin fD )
cos AE = (55)

1 + e cos fT + e cos fD + (e cos fT) (e cos fD)

-_-_e Isin @+e sinfT-e sinfDl

sin AV. = 1 + e cos fD + e cos fT + (e cos fT ) (e cos fD) (56)

where

= fT-fD

The angle AE is then _.ven by combining the above two equations,

which _ves

AE = tan "I c _(sin @ +C 4- C 3)

os #+C I +C z +e z - C 3 C 4

(57)

where

C 1 = e cos fD

C z = e cos fT

C 3 = e sin fD

C 4 = e sin fT
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The values of C 1 and C

e quations

are easily obtained from the standardZ

c I = _ - i (58)

- P i (59}
C2 r T

whe re

hZD
p - (60)

Then, using the fact that @ = fT " fD ' the following expressions can

be obtained:

e cos fT = e cos fD cos @- e sin fD sin @ (61)

e cos fD = e cos fT cos @ +e sin fT sin @ (6Z)

These equations can be rearranged into the forms

(e cos fD ) cos @ - e cos fT

e sin fD = sin @ (63)

e cos fD - (e cos fT ) cos @

e sin fT = sin @ (64)

Using the previous notation, these equations become

C 1 cos _- C z

C3 = sin _ (65)

C 1 - C z cos

C4 = sin _ (66)
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From the definitions of C 1 and C Z it is clear that

2 Z C32e = C 1 + (67)

The semi-major axis, a, can then be computed from

a = __P__
Z

1 - e

(68)

The sine and cosine of the range angle, @, are computed from the

relations

rD " YT
cos @ = (69)

rD r T

and

sin @ = 4- _I - cos Z@ {70)

The quantity sin @ is first assumed to be positive, and the unit

vector T T normal to rD and lying in the plane of rD and rT is then com-

puted. The dot product of i-and _T will then be positive if the sign of

sin @ was proper, and will be negative otherwise. If a negative is obtained

then the signs of IT and sin @ are changed appropriately.

The other quantities needed in the computation of v I2 are

C 5 = e sin E D (71)

and

C 6 = e sin E T (7Z)

The following equation can easily be derived from two body

relations :

e sin E = r %/I - e z {e sin f) {73)
P
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the r efo re,

rD V_l - ez C 3 (74)C 5 - p

rT _ - e Z C 4 (75)C6 - ---_ -

The total time expression is then

TI2 _ a_ tan-i e _ C6 + C5

cos #+C I +C z +e z - C 3 C 4

(76)

Since radial velocity is given by

_. = I% e sin f (77)
P

the desired radial velocity cut off is clearly

hD

_D = _ C3 (78)

Since angular momentum is defined as the cross product of _ and _v

it is evident that the desired tangential velocity at cutoff is just h---D-D.The

rD
total desired velocity is then

hD (_D) hD- = --C 3 +--_
VD p rD T

(79)

Similar reasoning is used to compute _T" the velocity on the trans-

fer ellipse at time tT. The only difference is that the unit vector in the

]tangential direction is given by [sin _ rD sin _ .

Provision has also been made in these equations to handle the case

where the free fall time is greater than the period of the transfer orbit.

The rcqulred free fall time, tT - tD , is tested against the period, P, of
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the transfer orbit. If t T - t D is greater than P then T12 iS increased by

P. This procedure has been found to be necessary because the search

logic will sometime require transfers through more than 360 deg.

It has been found that the p-iteration equations will not operate cor-

rectly if transfers very close to 1 80 deg are required. This problem will

arise no matter what scheme is employed because the plane of the trans-

fer orbit is no longer defined in that situation. In order to avoid this

problem a test is made on sin ¢ to make sure it is above a minimum level

defined by K31. If it is not then the program transfers back to the free

flight prediction routine and increases t T until r T is driven away from the

1 80 deg position.

5.3.1. 2 Powered Flight Prediction. {See flow chart 6)

As described above, in order to make the p-iteration computation,

the end points of the unpowered flight are required as well as the length of

time of the unpowered flight. One end point is of course the cutoff point

of the current burn period (which is seeking to inject the vehicle into the

desired orbit}. This end point designated as r D can be estimated as

follows :

We have that the expression for angular momentum is

h = r2 _

or in terms of finite differences and average values,

h h

A@ - _2 At fZ 2 T (80)

where A_bis the arc traversed in the T seconds to cutoff and where T is,

as before, the remaining time for the current powered phase. An esti-

mate of A#which becomes more accurate as cutoff is approached, can be

made by assuming linear change in h and r. Thus if

1
h = _ (hD + h) (81)

_'_ 1
r = _-(r D + r) 182)
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we get

where

h +h D
A@ = 2 T (83)

(r + rD)2

h=zv
x

h D

f

J given by the final computation for h D for the intercept case

_given by "_ for the specified conic case

The value of rD is pre-specified for the case of injection into a

specified conic. For the case of an intercept orbit the value of r D is not

prespecified {although it could be) but it can be derived by integrating

Equation (3) twice with D = 0. Thus

r t

z(t) = f f Bo d kdT + z (84)

o O

1 T 2 " (85)
rD = z(T) =-_Bo + Zo T + z

Similarly, a double integration of Equation (2) with B = 0, yields for the

desired out of plane cutoff position YD

A T 2

YD = y(t) = y + iT + o (86)2

With AS, z(T) and y(T) available, the desired cutoff position is

rD = z(t) cosA@k, + z(T)sin _gR + y(T)j (87)

and we have thus established the first endpoint for the p-iteration compu-

tation.

5.3. I. 3 Free Flight Prediction (see flow chart 2)

The second end point needed for the p-iteration computation is that

of the target at the desired time of intercept. (See below for the method

of selecting the time of intercept. ) The term target, however, can have

three different meanings depending on the mission being flown. For a

rendezvous mission the target is another orbiting space vehicle. For a
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synchronous comsat mission the target is a point in space at the earth

synchronous altitude and on a radial specified by the desired longitude of

the satellite. For a translunar mission where the translunar trajectory

has not been pre-targeted, the target is some pseudo aim point at some

specific offset from the moon. In all of these cases the target's motion is

predictable T seconds from the present provided the present position and

velocity are known. Thus, for the rendezvous and lunar missions the

corresponding ephemerides must be obtainable from the on board com-

puter. For the corn-sat the simple relation describing a circular equa-

torial orbit at synchronous altitude is sufficient.

With the initial conditions given, the expressions for the target's

position and velocity T seconds later can be derived as follows. (See Ref-

erence 2 and 5)

Let P -- a unit vector in the perigee direction

- a unit veetor normal to P and in the orbit plane.

Let the origin be at the perifocus with the X and Y axes directed

along P and Q respectively then

r

r

Solving (88) for P and Q we get

- x_-YX

Now for an ellipse (See Reference 2 and 5)

r = a(l - e cos E)

X = a(cos E - e)

a(l - e2) I/Z sin E

- (ua) I/2 sin E

r

y _.

# = [ua(l-e 2)]I/2c°sE
r

(88)

(89)

(90)
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Substituting (90) into (89) and after some manipulation P and Q become

5

= COSr E _ . _ sin E _ (91)

[1 - e2] 1/2 r + (cos E - e) (92)

Now, if t is the present time, At is the remaining time of free flight and

T is the time of rendezvous.

_(t + At) = _'(T) : X(T) P + Y(T) Q (93)

r(t + At) : r(T) : X(T) P + Y(T) Q (94)

Substituting equations (90) into (93) and (94) gives

1/2
?(T) = a(cos E T - e) P +a(l - e2) sin ETQ (95)

wr-_a sin E T _

r(T) = - rT P +Q-_a (I - e2) I2 kIc°srTET_jQ
(96)

and substituting (91) and (92) into (95) and (96)

[cosAE - e cos E]_- + J a.3 [sinAV,Y(T) = ra + e (sin E - sin ET) ]

(97)

r(T) = --_---_sin AE_ + a---[cos&E - e cos ET]
rTr r T

(98)

From (90) we have that

ecosE = 1 _r
a

(99)

From Kepler's Equation

M = E - e sin E

or

_3 (t - Vp) = E - e sin E
(lOO)

where Vp = time since perifocal passage.
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Similarly at T = t + At

(t + At - Tp) : E T - e sin E T (101)

Subtracting (100) from (101 ) we get

E T - e sin E T = E - e sine +_At (10Z)
a

or

e (sin E - sin ET)
Ju

3
a

- -- At - ZkE (I03)

Su[ _tituting (99)and (103)into (97)and (99)into (98)gives, finally

¥(T) ra---[ AV. (1 a)] _ + [At 3= cos - - - (AV. - sin E) ] (I04)

rT r lr T - r (1 05)

Equations (1 04) and (105) can be used as free flight prediction equations

provided ZXE is available. However since it is more convenient to treat

the coast arc time, At, as the independent variable, AE must be derived

from At. This can be done as follows:

We have for an ellipse (See Reference 5)

M T - M = at (1 06)3
a

where M is the mean anoma/y. Then, utilizing Kepler's Equation,

AM = M T - M = E T - e sin E T - E + e sin E

or

LiE = AM + e sin E T - e sin E (107)

Now

sin E T = sin (E + AE) = sin E cosAV. + cos E sinZiE (108)

Therefore,

ZklE = AM + e sin E [cosAE - 1] + e cos E sinAE (1o9)
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For an ellipse (See Reference 5)

e cos E

e sin E

so that

( _r ) (11o)- 1 - a

: (i11)

Equation (11 2) is transcendental in AE so that an iterative solution for _E

must be used. For this purpose we can write

_ f(_E) (i13)
_EK : _EK- 1 df{_E)

dAE

where f(AE), the error function, is defined from (112) as

Then from (1 1 4)

d(L_E) = _ sin LIE - 1 - cosAE (115)

The iteration is repeated often enough to insure the required accuracy.

5.3. I. 4 Selection of Optimum Coast Arc Time (See flow chart 4)

The means of selection of an optimum time for the intercept coast

arc will now be discussed. The basic purpose of the procedure is to

search for a time of intercept, tT, which will result in the consumption of

a minimum of propellant. This propellant is the sum of that needed for

injection into the intercept orbit and that needed for the second burn (i.e.

injection into the synchronous orbit for the ComSat, or the final closing

maneuver for rendezvous). An additional cor_straint is that the minimum

altitude, rp, of the intercept arc be above a certain value, K 1 3" If this

constraint cannot be met, then the search is carried out to find the tT

which maximizes rp. The reason for this constraint on rp is to prevent

or minimize any reentry into a significantly sensible atmosphere during

the transfer maneuver. The logic shown in flow chart 4 can be described

as follows.
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It is initially assumed that the goal is to maximize rp, so a posi-

tive At T is applied whenever 8rJSt T is positive. The magnitude of At T

is held fixed until the derivative, 8 rJ0tT, changes sign, and then it is

cut in half. This procedure is continued until rp exceeds the constraint

K13" Once this occurs the search variable is switched over to AV. The

problem is then re-initialized and a new constant magnitude of _t T is

introduced. In this case the object is to minimize AV, so a negative At T

is applied whenever 82_V/St T is positive. Again, the magnitude of A t T

is cut in half whenever the derivative 8AV/St T changes sign. If rp falls

below K 1 3 while this process is attempting to minimize AV, then t T is set

back to the last acceptable value and the process is stopped.

In summary then, the "optimum intercept targeting routine" per-

forms the function of seeking out an intercept trajectory which will be an

optimum with respect to propellant consumption. The sequence of com-

putations among the free flight prediction, the p-iteration, and the search

logic is as follows.

a) The search logic provides a value for tT_

b) The free flight prediction computes corresponding cut-

off point

c) The p-iteration computes intercept trajectory with

corresponding AV and rp

d) The search logic adjusts tT by ± At T

The above sequence is repeated for a given number of cycles after

which the corresponding cutoff requirements are provided to the steering

equations.

5.3.2 Specified Conic Routine {see flow chart 5)

The "specified conic routine" provides cutoff requirements to the

steering equations for the cases where the desired trajectories have been

specified before the Centaur guidance system has been activated (i.e.

where the desired trajectories have been pre-targeted). These pre-

targeted trajectories are escape hyperbolas for interplanetary missions

and ellipses for earth orbits and the pre-targeted translunar trajectories.

-_An initial value of tT must be inserted to start the procedure.
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Therefore common generalized conic equations can be used to obtain the

cutoff requirements for these type trajectories.

It is assumed that the specification of the desired orbit includes the

size and shape of the conic, the orientation of the orbit plane and as well

the direction of the perigee vector.

assumed to be available.

a _--

p _-

e

P

7

2 -

Thus the following quantities are

semi-majo r axis

semi-latus rectum

eccentricity

a unit vector in the direction of perigee

the unit vector normal to the orbit plane

These quantities are obtained from a set of mission constraints, which

implicitly define the characteristics of the conic to be achieved. Any set

of constraints from which the above quantities can be obtained can be

used. However, for the purposes of this study it was assumed that the

desired conics would be defined in terms of the constraints described

below. These choices were made on the basis of what is usually available

for the particular mission and/or what was most effective in providing

maximum control over the characteristics of the final conic. Appendices

B and C show how the following constraints provide a, p e and " for
' 1Rp

the "specified conic" guidance modes.

For the Interplanetary Escape Hyperbola the given mission con-

are :

1 ) Injection or vis-viva energy

2) The perigee altitude - Rp

straints

3) The direction of the outward assymptote
_S

(unit vector)

For the translunar Ellipse the given mission constraints are:

1) Radius vector to the point of intersection of translunar

trajectory with lunar sphere of influence = "RT

2) Velocity at RT m V T
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The above two quantities might be obtained by using a
patched conic technique as described in Reference 5•

3) The perigee altitude - Rp

For the Elliptic Earth Orbit the elliptic parameters as e, p, can be

obtained in a straightforward and familiar manner from the mission

requirements. However it should be pointed out that, even if, as in many

applications, there is no specific requirement on the line of apsides, the

guidance equations require that the perigee vector, _Rp, be specified.

The two basic equations used for the "specified conic" computations

are

- P (116)
rD 1 + cos f

and

v D _ r D
(i1 7}

Equation (116)provides the value of the cutoff radius rD needed by the

steering equations and Equation (I17) forms the basis for computing the

cutoff velocity. The sequence of computations may be taken to begin with

the value of rD computed at the previous guidance computation• From

this value of rD, the cutoff vector rD can be computed from

rD = rD cos A@k + rD sin A@_+ yDj. {118)

In (I18) the predicted powered flight burn arc A@ is determined as

described above in the "powered flight prediction" section. Also since it

is desired to cut off with no out of plane position deviation, YD is zero.

Using rD, the predicted cos f, { = cosine of true anomaly at cutoff) can

be computed from

rD _Rp
cos f - (1 1 9)

r D

From this, the new predicted value of r D can be computed from (11 6).

The new value of predicted cutoff velocity at r D is now computed from

Equation (11 7). This, however, is the magnitude of the velocity at r D but
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what is required by the steering equations is the component of V D along

rD, or r D. If we define

F = flight path angle at r D

then

_D = VD sin 1_ (120)

The equation for the flight path angle can be easily obtained for both the

ellipse and hyperbola as follows. At any point on the conic

r Xv = h (121)

Therefore

rvsin (_-F) = rvcos 1_ = h (IZ2)

or

cost = h (iz3)
rv

and h = _a (I - e2) I/Z

From this

sin 1_ = _- _I- cosgF (124)

where the plus or minus sign is chosen on the basis of a test which deter-

mines a positive or negative true anomaly (see flow chart). With Equa-

tions {123) and (124) the cutoff velocity vector is specified as follows

-- -- r__D_D

vD = v D (cos F) i_ + (sin i") rD
(izs)

Here I_ is a unit vector in the desired flight plane and normal to rD and

directed in such a way that

_D x I_ = r D j (126)

if j bears a right handed screw relation to the direction of flight.

defined, the velocity to be gained vector, Vg, is given by,

Vg = v D - v

With VD

(IZT)
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5. 4 COAST ORBIT DETERMINATION GUIDANCE (See flow chart 9)

This method monitors the vehicle state during the coast orbit, mak-

ing continuous guidance computations. When these computations indicate

that the conditions for beginning the next burn have been achieved, a

restart signal is given and the guidance computations shift to the appro-

priate powered flight mode.

This method then involves a continuous computation during the coast

period. A study of the equation mechanization flow chart set will show

that the cutoff requirement computation and steering computations con-

tinue throughout unpowered flight as well as during powered flight. Thus

a cutoff point estimate is available whether the vehicle is thrusting or not.

What this means_ as far as unpowered flight is concerned, is that an

estimate of the cutoff point for the up coming burn is always available, so

that the coast trajectory termination routine takes into consideration the

burn arc in making the decision of when to restart.

Now, referring to the coast trajectory termination flow chart, if the

vehicle is in powered flight mode_ _ will be unity, and the entire coast

trajectory termination routine will be by-passed. If a coast trajectory is

in progress then a test is made to see if the velocity increment needed to

complete the mission from the present vehicle state is sufficiently less

than the velocity increment remaining in the propellant tanks. If the

answer is no_ then no restart signal is given. If the answer is yes, fur-

ther tests are made depending on the objective of the next burn. These

tests are as follows:

5.4. 1 Injection into Intercept Orbit (bb = o; aa = o)

Here the only additional test is to insure that the perigee altitude,

rp, of the computed intercept orbit is large enough so as to insure against

a re-penetration of the sensible earth atmosphere. If r is sufficiently
P

large the restart signal is given, and if not the coast period is continued.

Notice that this criterion does not explicitly minimize the AV required for

the maneuver. Since the intercept and rendezvous (or com-sat injection)

burns are the last demands made on the Centaur propellant supply_ mini-

mization is not really required at this late phase of the mission.
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5.4. 2 I_jection into Hyperbolic Escape Trajectory (bb = o, aa = 1).

The criterion for restarting the engine here is that of injecting the

vehicle into the hyperbolic escape orbit as close as possible to perigee.

Thus if fT is the cosine of the angle between the perigee vector r T and

the direction of the outward assymptote, s, the engine should be

restarted when

rD --• S

CT r D - fT (1 28)

where fT is given by (see Appendix D)

fT = cos IT- tan

or, from the relation between cosine and tangent

fT
I _ (13o)

It is necessary however to make additional tests in order to avoid quad-

rant ambiguities. A check on the derivative of C T establishes whether

C T is in the first or second quadrant, or whether it is in the third or

fourth quadrant. Thus if

- CTO) I < 0 3rd or 4th quadrant(cw I>0 1st or 2nd quadrant

where CTO is the previously computed value of C T. Two more tests

establish whether C T is within a range of values around fT or, in other

words, these tests tell whether the vehicle will be within a certain accep-

table range of true anomaly at cutoff. Thus if injection will be allowed to

occur between + 8' and -e" degrees true anomaly, the two tests on C T can

be seen to make the proper restart decision if the following definitions

are made.

cos e, = KII0

sin e, = K200

cos e,' = KII0

(,31)

sin e,'= K21 0
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5.4.3 Injection into a Pre-Targeted Translunar Ellipse (bb = o, aa = 2)

As can be seen from the flow chart the procedure here is virtually

the same as that for initiating the burn for injection into the hyperbolic

escape trajectory. The only difference is the equation for computing the

true anomaly cosine, fT' of the target vector r T. The method of obtain-

ing fT is given in Appendix C with the result

It should be pointed out here that the computations using Equations (lg9)

and (1 31) need not necessariIy be done on board, since fT is a function

only of the quantities assumed to be pre-targeted.

5.4. 4 Injection of ComSat into Synchronous Earth Orbit {bb = 1 )

Here, the procedure is to initiate the burn when the predicted burn

arc is equal to the angie between the instantaneous position vector of the

vehicle r, and the position vector of the desired injection point r T. The

actual computation compares the cosines of these angles. Thus if C T is

the cosine of the angle between r and rT, then

r'r T

C T - rrT (133)

Since a continued estimate of the burn arc, A¢_ is being made

upstream in the guidance computation, a comparison of C T and cos A_

can be made. When C T approaches cos A_ the restart command is

issued. To avoid quadrant ambiguities, a check on the sign is also made

on C T.

5.5 CUTOFF ROUTINE (See flow chart 8)

After investigating several possible procedures a quadratic cutoff

formula was employed and found highly satisfactory.

The other procedures attempted were (a) a linear extrapolation of

the velocity to be gained parameter to obtain cutoff time and (b) a proce-

dure which attempted to predict whether the velocity to be gained parame-

ter would cease to decrease during the next computation time increment

(see Reference 3 for a complete discussion of this procedure). The flrst
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of these discarded schemes was found to be accurate enough for circular

orbit injections since it turned out that the velocity to be gained parame-

ter changed very linearly as cutoff was approached. However, it was

found that for injection into hyperbolic orbits, the change in the velocity

to be gained parameter approaching cutoff was non-linear enough to pro-

duce significantly large errors in the linearly extrapolated time of cutoff.

This large timing error was compounded by the fact that for hyperbolic

injections the vehicle acceleration levels are considerably higher than for
2

the near circular orbit injections (160 ft/sec versus 60 ft/sec 2) so that any

timing error in cutoff can become quite serious. The second discarded cut-

off scheme did not prove adequate due to the fact that it used only the thrust

acceleration to predict whether the cutoff would occur within the next compu-

tation time interval. This was acceptable for circular orbit injections since the

velocity to be gained is nearly horizontal near injection and the gravita-

tional acceleration has virtually no effect on the nulling of v . However,
g

for hyperbolic orbit injections the flight path angle at injection is signifi-

cantly different from zero (e. g. 5 °) and the contribution of the gravitation

acceleration is significant in how v changes.
g

The derivation of the quadratic cutoff equation is as follows:

Let Vg0, Vgl, Vg z be the value of the velocity to be gained at to, tl,

t Z respectively. Then using a Legrange interpolating polynomial to fit a

curve to these three values of Vg, we get that

t (Vg) = (Vg -Vgl) (Vg - v 2 ) to + (vg - vg O) (vg - vg2) tl
Vg 1) (Vg 0 - Vg 2) (Vg 1 - Vg O) (Vg 1 - Vg2)(VgO

+ (vg- VgO) (Vg- Vgl) t

(Vg 2 VgO) (Vg 2 - Vg 1)

be zero at cutoff,
g

Since we desire that v

Z (134)

we have for the formula

5-34



t (at cutoff)
Vgl Vg2

2
Vg 0 - Vg 0 (Vg I - Vg z) + Vg I Vg2

t
0

+ Vg 0 Vg2
2 tl

Vgl Vgl (VgO+ Vg 2) +Vg Ovg2

+ Vg 0 Vgl
2 t2

Vg 2 - Vg 2 (Vg 0 +Vg l) +Vg 0 Vg

Equation (i35) is that shown in the cutoff routine flow chart in.

form however, which promotes computational efficiency.

5.6

(135)

It is in a

MANEUVER SEQUENCING AND CONSTANT REDEFINITION (See
flow chart I0)

In order to have the various maneuvers of a given mission executed

in the proper sequence automatically, a routine which provides this

sequencing must be provided. What this really means is that the guid-

ance program must provide logic which directs the computations to the

proper area of the generalized equation set. In addition, since the same

equations are often used for different maneuvers, it is necessary to

redefine various coefficients and constants associated with a particular

equation or equations. Flow chart 1 0 (together with other logic through-

out the program) performs this function. Thus, by entering the proper

set of constants into the ADC prior to launch, any of the missions

described above can be performed, either in the direct ascent or parking

orbit mode.

Appendix E gives a breakdown of the inputs necessary to perform

any of the missions in either of the two modes.

5.7 NAVIGATION EQUATIONS

5.7.1 The Advanced Centaur Navigation Problem

The function of the navigation equations is to generate the quantities

that describe the state of the vehicle and which are used by the guidance

equations in determining the appropriate guidance commands. These

quantities are in general the position, velocity and acceleration of the

vehicle expressed in an appropriate coordinate system or systems.
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The space system at which this study is directed is one with the

navigation capability completely self-contained and with the principle

sensing devices being inertial instruments. Thus, since such instru-

ments can sense only accelerations due to the vehicle propulsion system

and aerodynamic forces, the acceleration components due to gravity must

be obtained by analytic means. That is, a mathematical expression which

is a function of vehicle position and has the accuracy necessary for the

proposed applications must be used to determine the acceleration imparted

to the vehicle by the earth's gravity. With the total acceleration determined,

appropriate numerical integration procedures are used to generate the

vehicle's velocity and then its position.

The principal problem likely to be encountered from the standpoint

of navigation in utilizing the Centaur vehicle for the various missions and

modes as described above, is that of the serious degeneration of the

accuracy of the results of the numerical integration when such calcula-

tions are carried out for extended lengths of time such as in parking

orbits and transfer orbits. This degeneration is due to the build up of

truncation and roundoff errors and as well to the use of an imperfect

mathematical model for the gravitational acceleration. By roundoff

errors is meant those errors which result from limiting the number of

correct digits which are to be handled by the computing device {in this

case a digital computer using binary digitsl. By truncation errors is

meant those errors due principally to the necessarily approximate nature

of the numerical integration procedure, though truncation errors are

generally taken to describe all those errors associated with the comput-

ing system not due to roundoffor gross mistakes.

The roundoff errors are not much affected by the design of the navi-

gation equations since these errors are determined principally by the

word length {or number of bits l allotted to the numbers appearing in the

navigation computations. On the other hand the truncation errors can be

reduced by a judicious choice of the numerical integration scheme and the

overall inherent accuracy improved further by choosing as accurate a

gravity model as is practical.

From the ground rules stated previously {see Section 2.41 it is evi-

dent that for many of the missions and/or mission modes the Centaur
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guidance and navigation system will be active for lengths of time signifi-

cantly greater than those required for the current Centaur missions.

Thus the navigation computations for the Advanced Centaur configuration

as envisioned in this report, would have to be carried out with accuracies

greater than those possible in the current configuration, and the immedi-

ate software avenues available for making such improvements are as sug-

gested above in the reduction of truncation and gravity model errors. A

third possible way of reducing errors is to abandon the numerical inte-

gration during the longer non-powered portions of the flight and instead

utilize the "free flight prediction" routine described earlier. Thus as

described in Section 5.3. i. 3, given the position and velocity at some

point on the coast orbit {say, Centaur main engine cutoff), the position

and velocity at some later time on the same coast orbit is completely

determined. Such a computation would satisfy completely the navigation

requirements except for the fact that the "free flight prediction" makes

the '%wo body" assumption which of course is not absolutely valid, and as

a result this procedure also incurs errors.

Below are given detailed derivations and descriptions of the inte-

gration scheme and gravity models suggested, Flow Chart 12 shows the

basic navigation combinations with the logic set up to use the "probe flight

predictor" for navigation during coast periods. If it is not desired to use

the "free flight predictor" for navigation purposes, then the _ test in Flow

Chart iZ should be eliminated and the _ = 0 branch deleted. Time and task

budgets did not allow for a performance analysis of these suggested navi-

gation procedures. What is provided in this report are procedures which are

are fundamentally more accurate than those procedures currently used,

and which are reasonable worst cases from the standpoint of the burden

navigation computations would place on Advanced Centaur computer

requirements.

5.7.2 Overall NaviGation Computations

The navigation computations can be divided into two general areas

as follows:

a) Navigation Initialization and Derivation of the parame-

ters required for the atmospheric equations.

b) Derivation of the basic navigation parameters.
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5.7.2.1 Navigation Initialization and Atmospheric Steering Parameters

Prior to the time of "go-inertial" (t e = 0) all input vectors which

have been specified have been specified in the equatorial oriented inertial

system. (See Section 5.13. ) At "go inertial" the orientation of the plat-

form coordinate axes are determined and the appropriate transformation

from the equatorial oriented to the platform coordinates may be com-

puted. This is assumed to be done on a ground computer. Using this

transformation the above input vectors are transformed to the platform

system (also done in a ground computer) and loaded in this form into the

flight computer.

At "go inertial" it is also necessary to define the pitch plane ori-

ented inertial system. Since this system is related to the platform sys-

tem by an orthogonal rotation about the w-axes the transformation is

all a12 0
T = -al 2 al 1 0

0 0 1

where

(136}

all = cos Au (137}

a12 = _I - a_l (138)

The angle Au is the difference between the alignment azimuth and the

pitch plane azimuth at launch where the launch time dependence of this

quantity can be determined prior to launch. Thus

all = all (te) (139}

where t is the launch time, referenced conveniently.
e

Now, it will be recalled (Section 5. I. 2) that the atmospheric equa-

tion parameters are expressed in a coordinate system which is parallel

to the pitch plane oriented inertial system but which is moving with

respect to it with the velocity of the launch site at launch time. This

coordinate system has been referred to as the earth fixed system in Sec-

tion 5. I. 2. The necessary position and velocity information in this

coordinate system is obtained by transforming first from the platform
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system to the pitch plane inertial system and thence to the earth fixed

system by subtracting the initial velocity of the launch site. The trans-

formation from platform to pitch plane inertial is carried out by using the

T matrix described above or, in terms of components

= a 1 r + a 1 rru 1 u Z v

r r + a 1 rv = "a12 u 1 v

r "- r
w w

v = aI v + aI vu 1 u 2 v

v
V = a12 v + aI vu l v

V = V
W W

(not used)

(not used) (140)

Since the atmospheric steerhug scheme selected required only cross

range position information (see Section 5. 8) the first and third equations

above may be eliminated as indicated.

The transformation from the pitch plane oriented quantities to the

earth fixed quantities is accomplished by subtracting the velocity and

position of the launch site at launch, expressed in the pitch plane oriented

system, from the position and velocity expressed in the pitch plane ori-

ented inertial system, or

V ! = V I . V v
X U UO

V ! -- V ! - V I

y v vo

V ! -- V !
z w

P' = r' - r' - v' t
y v vo vo e

(141 )

Here V'uo, V'vo, r'vo are the required position and velocity components at

launch of the launch site expressed in the pitch plane oriented inertial

system. These quantities are obtained from the corresponding position

and velocity components of the launch site at launch expressed in the

platform system, by using again the elements of the T matrix, or
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v' = a I v + a I vuo i uo 2 vo

v' = -a I v + a_ vvo 2 uo 1 I vo

r' = -a I r + a I rvo 2 uo 1 vo

(14z)

r are the required velocity and positionThe quantities Vxo , Vyo, ruo , vo

components of the launch site at launch expressed in the platform system.

The computations described above are summarized in flow chart 13.

It might be mentioned here that a look at flow chart 13 will show that the

quantities used to compute Vuo , v' and r' do not possess the zero sub-VO VO

script as do the equations (142) above. This is because the actual naviga-

tion computation need not make this distinction since the initial navigation

computation (K = 0) proceeds in a different way from the subsequent

c omput ati on s.

5.7.2. 2 Basic Navigation Parameters

By basic navigation parameters is meant here the position and

velocity information needed by the guidance equations and the coordinate

system in which these parameters are expressed. Since the guidance

equations make no restriction on what coordinate system can be used

{other than it be inertial) one that is convenient with respect to the appli-

cation of the guidance equations can be chosen. For the purposes of this

report such a coordinate system is the accelerometer input or platform

coordinate system. This choice was made for the following reasons:

i) The use of platform coordinates reduces the complex-

ity necessary to derive the atmospheric steering

parameters. This is true because the atmospheric

parameters are related to the platform coordinates

parameters by only a single rotation and a subtraction,

whereas the relationship with some other operationally

definable inertial coordinate system would involve, in

general, a three rotation transformation to the plat-

form system and then the additional rotation and sub-

traction to the earth fixed system.

z) The transformation from the atmospheric attitude

commands to attitude error signals is likewise less

complex owing to the fact that only the negative of the

single rotation mentioned above {the translation is not

necessary since direction cosines are being dealt with

here) need be made while a system other than the
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platform coordinates would require multiple rotations
again.

3) The transformation elements from computational

coordinates to the vehicle fixed system may be

obtained directly using the gimbal pickoff angles, or by

means of a resolver chain relating platform gimbal angles

to body coordinates. The use of some other computational

coordinate system would involve an additional transforma-

tion from the platform system to it.

It is, however, convenient to express the gravitational function in

an earth centered equatorial plane oriented coordinate system. This con-

venience comes from the fact that expressing, the gravitational function in

this coordinate system permits taking advantage of certain symmetry

characteristics and this results in a less complex function (see below).

This coordinate system is that described in Section 5.1. I. 3. Thus the

actual navigation computation which consists of a numerical integration

routine and the gravitational computation is conveniently carried out in

this earth centered equatorial plane oriented coordinate system.

Since the inputs to the navigation computation are velocity incre-

ments in platform coordinates and the output of the navigation computa-

tion must likewise be in platform coordinates, two transformations are

required on either end of the navigation computation, one from platform

to earth centered equatorial oriented and one which is its inverse. The

elements of these transformations are considered here to have been made

on the ground computer as soon as the launch time has been established

and loaded into the flight computer before actual liftoff.

The overall navigation computation flow chart is given in Figure 5

and summarizes the discussion of the above sections. The lines shown

dotted indicate the computations which are performed at or before "go

inertial". This figure does not show the literal computation flow but only

the flow in principal. The literal computation flow can be understood by

studying the corresponding equations flow charts.

5.7.3 Derivation of Navigation Equations

This section gives the mathematical justifications for the two

major segments of the navigation equations. These segments are the

gravity computation and the numerical integration procedure.
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5.7.3.1

enc e

whe re

= _ I - Jkv tr,_I _- Pk
k=2

Gravity Equation

An expression for the earth's gravitational potential is (See Refer-

2)

(cos _)1 (143)

J

Jk = the k th coefficient in the summation

Jk = 0 for kodd

V (r, _) = the potential at coordinates r,

r = radial distance from the center of the earth

= angle measured from the earth's polar axis

a = radius of the earth at the equator
g

Pk (cos _p) = the kth order Legendre polynomial

This expression is reduced to the above from a relatively untractable

form, by making the following justifiable assumptions

• The earth's mass is distributed symmetrically about

its polar axis

• The origin of coordinates coincides with the earth's

center of gravity

• The earth is symmetrically shaped with respect to the

equatorial plane

The Legendre polynomials are obtained from the expression

Pk (cos _0) - _ (2K - l) cos _o Pk-1 (cos _o)- _k-1).Pk_2 (cos _)]

(144)

with

Po (cos _) = i

Now, from analytical mechanics, the gravitational acceleration is

obtained by taking the gradient of the potential, or,
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G = vV Ir, _) (I45)

which can be shown to be (see Reference 2)

2
r

oo k

k-2

(146)

where ii and-[z are unit vectors in the radial and polar directions

respectively and the derivatives of the Legendre polynomials are

obtained from the formula

P_ (cos 9) - k-ll [(2k - I) cos _ ek-I (cos 9) - ke__2 (cos 9)] (147)

with

P_ = 0

P{ = 1

Now, if an orthogonal coordinate system is defined with z' being along

the polar axis and x' and y' axes being fixed in inertial space and lying

in the equatorial plane, we have as described in Section 5. I. I. 3, an

equatorial plane oriented inertial coordinate system. The components of

-- r respectively. Thus
r in this x', y', z' coordinate system are rx, ry, z

in this coordinate system,

r r r

--I _ xi, +._.y-_, +__z-_, 1148)
r r x r y r z

z (I49 )cos _ : r

where -Ix,'T', -'Iz' are unit vectors in the x', y', z' directions respec-
J

tively. Now if (148) and (I49) are substituted into (146) and if the terms

beyond k=4 are omitted, the components of the gravitational acceleration

in the x', y', z' system are
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Equations(150) represents a maximum complexity for the gravity

functions. It is probable that performance analysis on these functions

would show that the above equations would do an acceptable job with fewer

terms than shown. However, time and budget did not permit the

completion of such investigations. Equations (150) were used never

the less, in making the computer requirements estimate and constitute a

worst case contribution to these requirements. (See Section 4. )

5.7.3. Z Numerical Integration Procedure

The numerical integration scheme presented here attempts to pro-

vide improved accuracy by employing second degree numerical integra-

tion procedures rather than the currently used linear methods. This

requires the temporary storage of two previously computed values of the

parameter to be integrated, rather than just the storage of the result of

the last computed value of the parameter.

The procedure for integrating the gravitational acceleration to

obtain the contribution to the total velocity increment from the earth's

gravity is as follows.
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An estimate of the derivative of the gravity function at the time of

the present computation is made by fitting a second degree curve to the

last three values of the computed gravity and then establishing the deriv-

ative of the curve at the time of the current computation. Mathemati-

cally, however, the first step need not be explicitly taken, as the deriva-

tive may be obtained using the method of undetermined coefficients as follows.

Let the derivative at t = T be approximated by the following formula

dG

x _ A0 (Gx) + A I (Gx) + A 2 (Gx) (151)
dt - k= 2 k-I k

where A0, A 1, A 2 are coefficients to be determined and subscripts k,

k-1, k-2 refer to the current, last and next to last values of computed

gravity respectively. We impose the constraint that Equation (1 51) be

exact for functions of 2rid degree or less. That is, we say that when

G = 1
X

G = (t )x " tk-2 (152)

= (t )z
Gx - tk- 2

formula (1 51 ) will yield the correct result for

equations (152)we get

dG

x Differentiatingdt "

G' = 0
X

G i = l
x

(153)

G'x = (t- tk_2)

and if we assume a constant computation time increment. At

tk-2 = tk-2

tk_ I = tk_ 2 + At

tk = tk. 2 + 2At

(t54)

5-46



Substituting Equations (153) and (154) into (151) then gives the three

Equati ons,

0 = A 0 + A 1 + A Z

I = At A l + 2At A 2 (155)

4 = At A 1 + 4At A 2

from which

z (156)A 1 = -_

3
A2 - 2At

The formula for the derivative is then

_/k = _ (Gx) - Z (Gx) +_ (Gx)kk-2 k-i

With the value of the derivative obtained, the increment of velocity

added between tk and tk+ l is obtained using the trapezoidal relation

[(ao4](_%)k+_" (Gx)k_+_L'--_-Jk'' At

: X At +-_ _ (Gx) k-2(G) k Xk_ I

+-2 x k

x 7,,1
The same formula is used for AG and AG .

y z

These values of (AGx) , (AGy) , (AGz) become the (AGx)
k+l k+l k-I k

(AGy) k, (AGz) k, on the next computation of total integrated velocity.

The total integrated velocity is computed by adding to the last value of
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total integrated velocity the contribution from the integrated gravity

computation (Equation 158) and the incremental thrust velocity acceler-

ometer output (aVsx, etc. ). These computations are shown in the upper

left portion of flow chart 12.

In order to determine the vehicle position components a numerical

integration of the total integrated velocity is carried out. This proce-

dure utilizes the last three computations of integrated velocity to pro-

vide a second degree approximation, and is derived as follows.

Fundamentally we wish to find the increment of position contributed

to the total position between the time increments tk_ I and tk, from the

threevanesoftot_integratedvelocityattk.tk_1 and_-Z' IVx)'
k

(Vx) , ¿Vx) , and etc. for the other two components. To do this we
k-I k-2

set the integral equal to the following polynomial

tk

J V x dt = Ak_ 2 (Vx) + Ak_ I {Vx)k + A k (Vx) {159)
tk_ I k-2 -I k

and impose the condition that Equation (i59)be exact for functions of V x

of second degree or less. That is, Equation (I59) is to be exact for

V = I
X

V = It - tk_ 2] _160)X

vx = It-tk_z]z

If again the computation time increments are uniform,

tk_ 2 = tk_ 2

tk_1 = tk_z + at (161)

tk = tk-2 + 2at
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Thus integrating Equations (1 60) from tk_ 1

results into Equation (159), we

to t k and substituting the

get three equations, as follows:

At = Ak_ 2 + Ak_ 1 /k k

3At = +

: %-1 +4%3

which yields for the constants

Ak- 2 = - At

2
= --At

3

5
Ak =

Thus the integration formula becomes

t k
2

f Vxdt = [_2tk +-_tk_ 1

tk_ 1

Ak_ 1

(162)

(1 63)

- tk-Z At (164)

and etc. for the other two components. The position of this computation

in flow chart 12 is in the upper right hand corner.

5.8 ATMOSPHERIC STEERING

The discussion in this section is based on the work performed

under contract NAS3-3231 amendment 7 for the NASA Lewis Research

Center. This work was a study to determine the feasibility of employing

closed loop booster steering for the Atlas/Centaur vehicle. The results

of the study are reported in full in Reference i. A major portion of this

study was devoted to the investigation of various booster steering laws

for use in the closed loop mechanization. The investigation was aimed

at determining, from a wide range of possible steering functions, which

best satisfied the following atmospheric steering requirements for the

Atlas/Centaur vehicle.

a) Acceptable stability characteristics throughout booster

flight.
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b) Acceptable dispersion control (position and velocity).

c) Improved load relief characteristics over the current
A/C time programmed booster steering.

d) Acceptable response to other common disturbances

such as thrust misalignment, C.G. offsets, and

changes in aerodynamic parameters.

e) Acceptable response to the effect of finite navigation

information sampling intervals.

An initial conclusion of the study was that of all the candidate pitch

plane steering laws investigated (some 39 in all involving position, veloc-

ity andaccelerationtermsl four were acceptable for continued study .

These four were:

,+ V +C +C
I) Caz = C27 Vx C28 z 29 30

V ! V !
+C31 x z

2) c
az

3) c
az

4) C =
az

= C27 x C28 z 29

V t V I + A + C 3 A+ C31 x z C32 x 3 z

P +C (V_2+ V I" C_4P _-x C25 z 26 C27 x
% F

v,v,+C28 Vz 0 C31 x z

,,++C30 1 x z C32 x C33 A

(165)

z

The coefficients in these laws (and the discarded ones) were obtained by

making least square fits of the particular law to a nominal A/C-5 tra-

jectory. The field was narrowed to the above four laws by

a} Discarding laws whose flts to the nominal trajectory

were such as to result in unacceptably large residuals.

b) Discarding laws which were not inherently stable.

This was ascertained by checking the various partial

Yaw plane laws were not investigated since the problems encountered in

pitch plane steering were considered to be much more severe.
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derivatives (with respect to the appropriate independ-

ent variables - position, velocity and acceleration) and
discarding laws for which the partials were of the

wrong sign at a critical point in the flight or for sig-

nificantly long durations. A wrong sign here means a

sign which would result in pitching the vehicle in the
wrong direction to correct a given deviation from the

nominal trajectory.

The results of the analysis performed on these remaining four laws

is summarized from Reference 1 below. For a complete description of

this analysis Reference 1 should be consulted.

Once the inherent stability of the four laws had been established,

each law was analyzed further to determine what its effect would be on the

overall stability of the control system with the guidance loop closed.

This was done by a standard technique of linearizing the system equations

at three critical points of the flight. Then the effect of the given booster

steering law in the closed guidance loop was determined by noting the

appropriate stability margins on a gain-phase portrait. The three criti-

cal points were:

1) Pitchover start

2) Max-Q (maximum aerodynamic loading)

3) Booster engine cutoff

Of these the Max-Q point is the most important since in the current

Atlas/Centaur configuration the aerodynamic gain margin is only barely

acceptable at this point. The results showed that the degradation of the

aerodynamic gain margin and the rigid body phase margin due to any of

the four steering laws was not severe. However, since the aerodynamic

gain margin at max-Q is dangerously small to begin with, even a small

degradation is serious. For this reason a redesign of the Atlas/Centaur

autopilot was dictated. When the four laws were analyzed with the rede-

signed autopilot it was found that laws 1 and 3 produced acceptable mar-

gins but that laws 2.and 4 produced instability due to the presence of

acceleration terms in these functions. This would leave laws 1 and 3 in

the running if the redesigned autopilot were to be employed.

When the four laws were evaluated in terms of their ability to keep

position and velocity perturbations small all gave satisfactory results
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with law 4 giving the best position dispersion results and law 2 giving the

best velocity dispersion results. However it was found from simulation

runs that the load relief characteristics were best with laws 1 and 2,

giving 12.5% improvement over the performance with the present time

programmer.

All of the four laws gave satisfactory results when disturbances

such as thrust misalignments, C.G. offsets, and changes in aerodynamic

parameters were simulated.

When the sampling periods for obtaining navigation information was

varied using each of the four laws it was found that for the laws incorpo-

rating acceleration terms (2 and 4) the sampling period had to remain

less than 0.25 seconds to prevent instability. For the laws incorporating

only position and velocity terms (1 and 3) the sampling times had to

remain less than I. _5 seconds though for law 1 instability did not occur

until the sampling time was above P seconds. For law 3 a significant

increase in the maximum bending moment at station 770 was experienced

for values of 1. P5 and above and instability occurred at _ seconds.

From these results, the balance favors law 1, because of its good

load relief characteristics and its ability to interface properly with an

advanced autopilot for the Atlas/Centaur. Though the other laws offer

somewhat better dispersion control, law 1 still keeps these dispersions

within limits which are entirely acceptable. Thus on the basis of the

work outlined above, the velocity law (law 1) is incorporated in this set of

generalized equations to perform the booster steering function with the

actual mechanization shown on flow chart 11.

It might be pointed out here that the work reported on in Reference

1 and outlined here was specifically directed at the Atlas/Centaur vehicle

with its own unique structural and control interfaces with guidance

schemes. For example, if the aerodynamic gain margin were not so

small to begin with a redesigned autopilot would not be necessary, and the

acceleration terms, in law 2 and 4 would not induce the instability

*Load relief is taken to be indicated by the reduction in the maximum

bending moment at station 770 of the Atlas/Centaur over that using the

current time programmed steering.
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mentioned above. Then, laws 2 and 4 might be recommended in order to

take advantage of their ability to reduce dispersion more effectively than

the velocity law. The other equations (that is the exo-atmospheric equa-

tion) in the generalized set, are not so organically connected to the Atlas/

Centaur vehicle which points up the fact that, in general, atmospheric

equations are highly vehicle dependent where the explicit equations are

not. In view of this any design of "generalized equations" where the gen-

eralization is intended to encompass different vehicle configurations,

would be hardpressed to provide a "generalized" scheme for ascent

through the atmosphere applicable in an efficient manner to the various

booster vehicles, and a design approach which admitted the atmospheric

equations as a module would be called for. This modular approach was

taken in the design of the equation set presented in this report, with the

specific atmospheric steering equations being here, for the obvious

reasons, Atlas / Centaur motivated.

5.9 COMPENSATION EQUATIONS

Flow chart 14 shows the general form of the equations assumed to

account for the inertial instrument compensation computations. These

equations can be considered representative of the equations used to com-

pensate for

accelerometer biases

gyro drifts

scale errors

nulling errors

However, since the actual compensation equations are determined in the

first instance by the inertial hardware itself, these equations do not con-

stitute a recommendation but rather are included in this general way so

that the overall characteristics and implication of a complete guidance

equation set may be more accurately determined.
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6. PERFORMANCE OF THE UPPER STAGE STEERING EQUATIONS

This section of the report has been purposely separated from any

overall performance summary to emphasize the fact that the steering

equations which have been developed are independent of the methods used

to compute required cutoff conditions. The explicit methods of computing

required cutoff conditions recommended in this report are not essential

to the steering equations, and could be replaced by the more conventional

finite series representations if desired.

A goal of the development effort on this contract was to show that

the upper stage steering equations could give the required efficiency and

accuracy over a wide variety of missions and still remain entirely ex-

plicit, i.e. , not require any trajectory dependent pre-targeted steering

coefficients. This goal was achieved, as is shown in the following

paragraphs. However, there was little time left for an exhaustive study

of the effect of various perturbations on a particular mission. Such a

study should be made if the development effort is continued. It should be

pointed out, however, that this scheme is not as sensitive to perturbations

as are some. In the case of injection into a fixed elliptical or hyperbolic

trajectory the steering is designed to remove any deviations in the initial

conditions at the start of the Centaur stage. Hence, the only effects of

winds, booster stage perturbations, or sustainer perturbations, are £o

change the amount of fuel consumed in Centaur. In the case of intercept

guidance the desired velocity is computed explicitly, and hence there is

no increase in the error due to variations in cutoff position as there would

be with a finite series representation. There may, of course, be some

steering errors due to center of gravity offsets, etc. , in Centaur, and

these should certainly be studied.

The following paragraphs describe the simulation results which

were obtained for some typical nominal missions, and some of the steps

which were taken in the development process. The simulations were

made with an AC-8 configuration, which was slightly modified to eliminate

certain items not essential to the present study. The values of the

guidance coefficients which stayed the same in all of these runs are

listed in Table 5.
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It was first suspected that it might be necessary to stop the

guidance equations a few seconds before cutoff in order to avoid a situation

where a division by a near zero time to go (T) might be required. The

tests on T against the coefficient K14 was designed to prevent this situa-

tion. However, in the course of the study it was found that the test was

really unnecessary, and actually caused increased steering error unless

K14 was held at 1.0 sec. No excessively large attitude rates were

observed near cutoff with the value of K14. The value of K 16 was held at

1.0 sec, which means that the cutoff routine is entered as soon as T

becomes less than 1.0 sec. Since the normal guidance computations are

halted once the cutoff routine is entered, the test employing K14 is not

really necessary.

This test was included in the flow charts to accurately describe the

existing simulation.

The value of K55 was held at 400 sec., which caused the vehicle to

be steered towards a circular orbit up until 400 seconds after liftoff. It

was found that this procedure gave a better trajectory shaping and

decreased the fuel consumption on the hyperbolic and intercept flights, as

is explained below in the sections on those particular simulations. The

value of K56 was chosen to give this circular orbit a 90 n. mi. altitude.

The value of K90 was chosen empirically to give good results under

a variety of conditions. This correction is necessary to acount for

gravity losses and rotation of the Vg vector when computing time to go

until Cutoff, T.

The value of K91, i.e., -3Z.3, was chosen from the difference

between the final acceleration of the Atlas Sustainer and the initial

acceleration of the Centaur. This choice is in agreement with the theory

of Section 5.2.3.

The value of K95 was chosen as 30 sec, which means that over the

last 30 seconds the steering equations abandon the position constraints and

drive towards the velocity constraints only. It had been observed in the

simulation that if this switch were not used the equations would satisfy the

position constraints quite accurately, but have rather large errors in
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Table 5. Values of Guidance Coefficients Which Remain
Constant for All Missions

K 6 = 36,000 KI9 = 13,800

K7 = 23, 00 K51 = 4.0

KII = 0.027159570 = 4.0
K52

KI2 = 0. 0375 = 400
K55

KI4 = I. 0

K56 = 21,47Z, 863

KI5 = 0.0

KI6 = 1.0 K90 = 0.0930

= 4,014. Z K91 = 3Z.3
KI7

KI8 = 9,840 K95 = 30.0

velocity. This action is quite undesirable since the velocity errors are

usually much more serious than the position errors. The switch to

velocity steering at T = 30 seconds remedies this problem.

The coefficients K6, K7, KII, KIZ, KI7, KI8 and KI9 describe the

accelerations and velocity change capabilities of the rocket engines. They

have been chosen in a straightforward manner from the known character-

istics of the Atlas and Centaur vehicles.

The coefficients K51 and K52 are used in the computation of the

commanded body angular rates. The first coefficient, K51, multiplies

the angular error in body coordinates, and the second multiplies the

integral of that error. This control law gives rise to a linear constant

coefficient 2nd order servo system on the body attitude. The fact that the

commands are computed only at the guidance cycle times, i.e., once

every half second, causes this control system to behave as a sampled

data system. The equivalent block diagram is shown in Figure 6.

The integral term was included in the control law in order to elimi-

nate the study state attitude error due to a constant commanded angular

rate. The problem of designing a realistic autopilot is not considered in

this part of the report. However, it was necessary to choose the gain
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K51 and K52 to give a good response in the simulation of the guidance
equations. The error in body attitude is related to the commanded

attitude by the expression

me (z)= (Z-l)Z ec(z)

P Z 2 + Z (K51 Atf- 2) + (I - E51 Atf + K52 Atf 2)

(166)

where Z is the usual transform variable used in sampled data analysis.

If e (t) is a ramp function then
c

A tfZ

eclZ) -
(Z-l)z

(167)

and so

Atf Z

A"Op
(Z) = (168)

Z 2
+ Z (K 51 Atf - 2) + (I - K51 Atf + K5zAtf 2)

Application of the final value theorem then shows that the steady

state error in body attitude is zero for a ramp input. For a cycle time

of Atf = 0. 5 sec. a systemwith the minimum response time to a step or

ramp input is obtained with K51 = 4.0, K52 = 4.0. With these values of

gain the expression for the Z-transform of AOp (t) is

aep(z) : (z-l)Zzz, ec(Z) (169)

The Z-transform of Aep (t) for a unit step input in @c(t) is then

ao (z) = 1- z
P

-l

whereas the corresponding expression for a unit ramp input is

(170)

AOp (Z) = Atf

-1
Z (171)
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The corresponding time responses are shown in Figures 7 and 8.

These values of gain generally gave quite good results in the simu-

lations. For example, in the last thirty seconds before cutoff on the

parking orbit injection, the worst error was 13 se'-'cin pitch and i0 se'c

in yaw.

6. I PARKING ORBIT AND ELLIPTIC ORBIT INJECTION

Much of the initial work concentrated on getting good performance

for a special case of elliptic orbit injection, i.e., for injection into a 90

n. mi. circular parking orbit. Since only the performance over the Atlas

sustainer and Centaur stages was of interest, the simulations were made

from a nominal set of initial conditions at the beginning of the sustainer

phase. The j vector describing the orientation of the desired orbital

plane was chosen so that it contained the position and velocity vectors at

booster burnout. The special values of the guidance coefficients needed

for the particular run are listed in Table 6.

Table 6. Special Guidance Coefficient for the Parking

I_rtjection Simulation

I. v = 0

Z. K58 = 1

3. j = 0.14080116, 0.49383428,

4. KZ3 = 21,472,863

5. KZ4 = 0.0

6. K25 = ZI,472,863

0.85808085

The original set of equations presented in Reference 3 were found

to be inadequate because they caused excessive fuel consumption. The

cutoff weight for a simulation using these equations was 14,106.5 ibs.

An open loop simulation using the calculus of variation to find the optimum

steering profile gave a cutoff weight of 14, 169.5 Ibs., a savings of 63.0

ibs. It was found that most of the difference was due to poor steering over

the Atlas sustainer stage, which caused poor initial conditions at the

beginning of Centaur. This fact was proven by making a guided simula-

tion over the Centaur stage with a set of initial conditions taken off the

6-6



2.0

I0\
a. 0.0

° %/
-I .0

-2.0

0 I .0 2.0 3.0 4.0

TIME, SEC

Figure 7. Unit Step Response of the Attitude Control System
Used in the Guidance Simulation

2.0

1.0

0.0
<I

-I .0

-2.0

0 I .0 2.0 3.0 4.0

TIME, SEC

Figure 8. Unit Ramp Response of the Attitude Control System
Used in the Guidance Simulation

6-7



open loop simulation. The cutoff weight in this case was 14,163.0 lbs. ,

which shows that the steering equations waste only 6.5 lbs. , over the

Centaur stage when the proper initial conditions are provided.

The original equations were inefficient because no attempt had been

made to force the attitude to be continuous across the staging region.

Figure 9 shows a plot of Caz, the direction cosine between the desired

thrusting direction and the local vertical, for the original set of equations

and for the optimum solution using the calculus of variations. Since C
az

is approximately equal to Cos 8 , where 8 is the desired pitch angle
P P

from the local vertical, it is a measure of the desired attitude angle.

The optimum C is continuous and has a continuous derivative across
az

the staging region, whereas the original guidance equations gave a very

large change in Caz across the region. Once this problem had been

recognized the equations were modified with a AB correction which is

designed to give a smoothCaz across the staging region. The theory

behind this correction is discussed in Section V.B.3.

Figure 10 shows the behavior of C after the AB correction had
az

been included. This profile has a much smaller C change than that of
az

the original equations, and generally follows the optimum Caz much more

closely. There is still a small discontinuity remaining because of the

approximations which were made in mechanizing the guidance equations.

The required change in attitude is only 4 d_g, however, which is quite

an improvement over the 16 deg. of the original equation. The cutoff

weight was increased to 14, 150.5 lbs., which means that only 19.0 lbs.

of fuel were wasted. This final loss was judged to be acceptably small,

so development work on this problem was stopped. Further improvement

could probably be made at the price of increased guidance equation

complexity.

Figure 11 shows the behaviour of the B coefficient during the

powered flight region of the parking orbit injection simulation. The large

change between the values at sustainer cutoff and Centaur ignition was

purposely inducedby means of the_B correction. This change in the B

coefficient causes the Caz direction cosine to be more smoothly behaved.

The straight line behavior of the B coefficient after Centaur ignition is
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due to the fact that _ was assumed to be a straight line in the derivation

of the guidance equations. The B coefficient is identical to 'r, as can be

seen from the derivation in Section 5. Z.3. The B coefficient becomes

nearly constant over the last 30 seconds of flight because of the switch to

velocity steering during that time.

Some of the other characteristics of the parking orbit injection

simulations are represented by Figures 1Z through 18. Figure 1Z shows

a plot of altitude vs. time. The altitude rises above the desired value

during the Centaur phase, then drops down to its final value. This

behavior is fairly typical of most parking orbit injection schemes.

Figure 13 shows a plot of time to go until cutoff, T, for the same

simulation. It is clear from this curve that T is extremely linear and

quite accurate over both stages. The small irregularity which occurs

between stages is due to the fact that the acceleration goes to zero in the

region, and hence V and V become constant, causing T to become
c g

constant.

The accuracy of the cutoff point prediction scheme is also of

interest. Figure 14 shows a plot of the predicted change in range angle

during powered flight A S, on the parking orbit injection. The components

of the predicted cutoff position in inertial coordinates, as computed from

A Sandthe present position vector, are plotted in Figures 15 through 17.

The components of the present position vector in inertial coordinates are

also shown in these figures. It is clear from these curves that the

prediction becomes increasingly accurate as the cutoff time approaches,

and that the error goes to zero at the end. Even at the beginning the

error is less than 30 miles, while the total position change being con-

sidered is on the order of 1,500 miles. Hence the worst error is on the

order of Z% of the total position change, which is quite low considering

the number of approximations involved.

The accuracy of the steering equations was found to be quite good,

i. e. , the vehicle was driven through the required final condition with very

little error. Figure 18 shows a plot of the magnitude and plot of the

inertial components of the V vector over the last few seconds of flight.
g

The steering accuracy is demonstrated by the fact that all these
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components appear to be driven through zero simultaneously. On the

parking orbit injection the vehicle is thrusting nearly horizontally at

cutoff. Hence the errors in radial position and velocity and out of plane

position and velocity are measures of the steering error, whereas the

error in tangential velocity is determined by the cutoff routine. The

errors in radial position and velocity at cutoff were 15.75 ft and 0. 020
-1

ft sec respectively. The errors in out of plane position and velocity

were 19.5 ft and 0.015 ft sec -1 respectively. These errors are certainly

much lower than can be expected from any inertial guidance hardware

which can be built in the near future. The tangential velocity was in

error by 0.15 ft sec -1, which is largely due to the cutoff routine. The

resulting apogee error was 0.05 miles, and the perigee error was 0.03

miles. There was little effort devoted to determining just why the cutoff

routine gave this relatively large error. However, there is no reason

to believe that it cannot be improved to the point where the tangential

velocity error is as low as the steering error.

It can be stated, then, that the steering equations give satisfactory

efficiency and accuracy in the parking orbit injection mission.

6. Z HYPERBOLIC ORBIT INJECTION

Several simulations were made using the hyperbolic injection

option of the guidance equations on a direct ascent mission. The special

guidance coefficients used for making these runs are listed in Table 7.

The jvector describes the desired orbital plane, the _Rp vector describes

the desired orientation of the hyperbola in this plane, and K23 and K21

define its desired shape, representing semi-major axis and eccentricity,

respectively.

The initial simulations which were made showed that the guidance

equations were causing excessive fuel consumption. The final weight at

cutoff was 5501.8 ibs., when these equations were used without modifi-

cation. A calculus of variations solution with the same initial and final

conditions had a final weight of 5686._ Ibs. , a savings of 184.4 Ibs. It

was found that the C direction cosine profile given by the guidance
az

equations was vastly different from that of the optimal solution, as shown
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Table 7. Special Guidance Coefficients for the Hyperbolic

Orbit Injection

I. %2 --

2. K58 =

3. -j =

4. K23 =

5. K25 =

6. KZ4 =

d

7.

IRp

0

+I

O. 1408011 6; O. 49383428; O. 85808085

9. 7708476 X 107 ft.

4. 7607574 X 107 ft

I. 2195252

0.4694073573; - 0.7965397313; 0.3810265139

0. I140066981; 0.8529953211; -0.503146562

in Figure 19. It was also noted, however, that the optimal C direction
az

cosine profile was almost identical with that of the circular parking

orbit injection, as can be seen by comparing Figure 19 and 9. From

these results it was decided that the equations should be modified to steer

toward a circular parking orbit in the early part of the burn, i.e. for

time less than K55. As was mentioned earlier, K55 has been chosen to

be 400 seconds. This resulted in a steering profile somewhat closer to

the optimal solution, as shown in Figure 20. The cutoff weight was

increased to 5660.0 ibs., which is only 26.2 Ibs., less than that obtained

using the calculus of variations. This loss was judged to be acceptably

small.

This method of steering causes the time to go computation to be

incorrect for time less than 40 seconds. Figure 21 shows a plot of time

to go, T, as a function of time.

The jump change in T at 400 seconds amounts to about I00 seconds.

The computations past that point are not quite as linear as on the circular

orbit injection, but are still satisfactory.

Some initial difficulties were encountered in computing the reciprocal

of the acceleration, i.e., y , on the hyperbolic orbit injection because the

velocity consumed, Vc, becomes so very large toward the end. When Vc
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becomes larger than the exhaust velocity of the gases, KI9, then the
V

accuracy of the expansion of exp ___c_c tends to become poor. It was found
KI9

that a six term expansion of this function was needed in order to insure

the proper accuracy.

Figure 22 shows a plot of the altitude vs. time on the hyperbolic

orbit injection. This curve is, of course, identical with the parking orbit

injection curve up until 400 seconds. The altitude then drops down below

the 90 n. mile of the circular parking orbit before rising back up to the

final cutoff value. The altitude at cutoff was 716,674 ft., and the radial

-I
velocity was 3675.38 ft sec

Figure 23 shows a plot of the components and the magnitude of V
g

in inertial coordinates. These curves again illustrate the accuracy of

the steering equation, since all components appear £o be driven to zero

simultaneously. The vehicle is thrusting in a nearly horizontal direction

at cutoff, so the error in radial and out of plane position and velocity are

indicative of the steering error. The error in the tangential velocity is

caused by the cutoff routine.

The hyperbolic orbit injection differs somewhat from the parking

orbit injection in that the radial and tangential components of desired

velocity are varying continuously throughout the flight. Figures 24 and

25 show the variations in these quantities in the region near cutoff.

These variations are caused by errors in predicting the cutoff position.

-- Figure 23 are thus due to variations in _d as wellThe variations in Vgin_

as V. The fact that V essentially goes to zero means that V is very
g _ g

nearly equal to V at cutoff, in spite of these variations in V d.

If the curves in Figures 24 and 25 are extrapolated to the known

cutoff time it appears that the desired radial and tangential velocities

were 3675.52 ft sec "I and 37,840.84 ft sec "I respectively. The actual

radial and tangential velocities at cutoff were 3675.38 ft sec -I and

37,840.66 ft sec -I respectively. The 0. 14 ft sec -I error in radial

-I
velocity is essentially a steering error, and the 0.18 ft sec error in

tangential velocity is due to the cutoff routine. There was, in addition,

a 0.030 ft sec -I error in out of plane velocity. The corresponding position
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errors were Z, 055 ft in the radial direction and 15 ft in the out of plane

direction. These figures were all taken from a simulation with K95 = 30.

The overall performance can be improved slightly by changing K95 , as

shown below.

The objective of the hyperbolic injection is to obtain a prescribed

escape velocity with respect to the earth, Voo , which insures that the

vehicle will have some desired velocity with respect to the sun. The

error in attaining Voo is then a measure of the software performance.

This error is a function of both the velocity and position errors at cutoff.

From the vis-viva integral one has

z _ (17z)
Vo0 a

so the magnitude of the final velocity depends only on the semi-major

axis of the orbit. This semi-major axis is in turn related to the radius,

r c, and velocity, v at cutoff by the equationC'

1

a(r. vc ') 1..
The partial derivatives of "a" with respect to r and v are

C C

_a

_r
c

()'- Z a

r C

and

2a2v
_a c

%v
C

When the numerical values of this particular simulation are sub-

stituted into the above expressions the results are
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_a

ar
C

- 43

_a
= 48,500 secav

C

It might appear at first that the velocity error at cutoff is much more

critical than the position error. However, the position error can make

important contributions too. For example, the run with K95 = 30 seconds,
the errors were

Ar = + 2,055 ft
C

_V
C

= - 0.21 ft sec "I.

so that Ar contributed + 88, 500 ft to Aa, whereas Av contributed
C C

-10,200 ft. The actual error observed in this case was Aa = + 7Z,966 ft,

which is very close to the value predicted by the above linear theory. The

resulting error in the magnitude of _oo was 4.1 ft sec "1. This simple

treatment says nothing about the error in the direction of Voo. It does,

however, point out the fact that both position and velocity error at cutoff

are important to the final performances.

By varying K95, the value of time to go at which velocity steering

is commanded, it is possible to obtain a compromise between position

and velocity errors at cutoff. If K95 is made large then the velocity

steering is begun early and the velocity errors at cutoff are kept low,

while the position errors may be rather larger. On the other hand, if

K95 is decreased then the position errors are kept small, but the

velocity errors get worse. It is clear, then, that there is some optimum

value of K95 which will give a minimum to the magnitude of the error in

VO0 •

K95,

in
OO

for interplanetary missions is usually several hundred ft see-

nominal error is almost negligible.

Figure 26 presents a plot of the magnitude of the error in _o vs.

which shows that the best value of K95 is about 15 sec. The error
1

at the value of K95 is 3 ft sec- . The total midcourse Av provided
1

, so the
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The steering equation performance on a nominal hyperbolic orbit

injection is then quite satisfactory from the point of view of both fuel

consumption and accuracy.

6.3 INTERCEPT ORBIT INJECTION

The steering equations were checked in the intercept mode by

simulating the direct ascent intercept of an artificial earth satellite which

had a 148.5 n mi perigee and a 158.5 n mi apogee. It was assumed that

the launch site was very close to the orbital plane of the target, and that

the two orbital planes were coincident at booster burnout. The simula-

tions were again initialized at the beginning of the sustainer stage,

assuming a nominal trajectory up to that point. Table 8 gives the values

of the special guidance coefficients used in these simulations. The

meanings of the symbols used there are given in Section 9.

The free flight prediction equations, p-iteration equations and

search routine were used in these runs to compute the desired velocity

at cutoff. The search procedure was used to find the best rendezvous

time, tT, to minimize fuel consumption, subject to the constraint that

the perigee altitude be above 300,000 ft. The launch window limits were

established by running a number of trajectories with different launch

times and noting the time limits on the region of acceptable performance.

It was found that excessively high attitude rates were required prior to

the opening of the window, and that the perigee altitude became too low

after the closing of the window. The window which was finally established

was over seven minutes wide. Simulations were obtained for five

different launch times within this window. The effects of earth's rotation

on the launch site location were ignored in this study, since the earth

rotates only I. 75 deg during the launch window.

The general procedure of guiding towards a 90 n mi circular

orbit until t = 400 seconds was retained in these simulations, since it

seems to give better trajectory shaping and lower fuel consumption. For

example, on the trajectory which had a starting time at 6 minutes after

the opening of the launch window, the cutoff weight was increased by 421

Ibs. by the use of this procedure.
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Table 8. Special Guidance Coefficients for the Simulation of the
Intercept of a Low Altitude Earth Satellite

K I = 5.50 x 109 ft2 secI

K2 = 5

K3 = 550 x 109 ft 2 sec -I

K4 = 300 sec.

K 5 = 3200 sec.

KI0 = 50 sec.

KI3 = 21,200,000 ft.

K20 = 0.0

K22 = 300 sec

K30 = 3.0

K31 = 0. 050

r- = 10,294,364.2; + 17,423,723 0; - 8,338,014.7 ft.
O

= 22,082.41; - 8,849.13; + 8,729.5 ft sec "I
O

t = 3593. 1
O

v = 1

J = 0.14051799; 0.49381829; 0.85813647

Figure 27 shows a plot of the final Centaur weight for various

launch times. The weight is increasing for later launch times, which

means less fuel is being used. At the end of the window the cutoff weight

is almost equal to the 14, 150 lbs. observed on the circular parking orbit

injection. At the opening of the window the cutoff weight is 1 3,274 lbs.

The increase in final consumption at the opening of the window is due to

the fact that the trajectory has to be lofted somewhat to allow the target

vehicle to catch up with the Centaur. Towards the end of the window the
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phase lead of the Centaur is greatly reduced, so the trajectory is much

flatter.

The value of the D coefficient in the steering equations was held at

zero in all the simulations. It is possible that even better fuel economy

could be obtained if some other value of D were used. The optimum

value of D could easily be found by making a number of simulations with

different D coefficients.

The lofting required for early launch times is illustrated in Figures

28 and 29 which show the radial velocity and altitude at cutoff for various

launch times. It is clear from Figure 28 that the radial velocity at cutoff

is a large positive number at the opening of the window, then decreases,

goes through zero, and becomes negative at the end of the launch window.

At 347 sec, the lift off time for which the radial velocity at cutoff is zero,

an almost perfect Hohmann transfer condition prevails. If the launch

occurs prior to that time, then the vehicle passes through the apogee of

the transfer orbit and comes down on the target vehicle from above. If

the launch occurs later than 347 sec then the vehicle passes through

perigee on the transfer orbit, and comes up to the target vehicle from

below.

The rendezvous time, t T, chosen by the search routine is plotted

in Figure 30. The longest t T occurs at the launch time corresponding to

the Hohmann transfer. All other rendezvous times are higher than this,

indicating a transfer of over 180 ° .

The perigee and apogee altitude on the transfer orbits for various

launch times are shown in Figures 31 and 32 respectively. Note that the

perigee altitude is always considerably lower than the cutoff altitude

except at the launch time corresponding to the Hohmann transfer condition.

At that time the two are essentially equal. The perigee altitude decreases

very rapidly past the 347 sec. lift off time, soon hitting the 300,000 ft

lower limit at the edge of the launch window. The apogee altitude is

very high at the opening of the launch window, because the Centaur must

go high above the target vehicle to reduce the phase lead. Increasing

liftoff time then produces a linear decrease in apogee altitude until 340

sec point. The apogee altitude then becomes essentially constant at the

altitude of the target vehicle.
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The steering accuracy was again quite good. The cutoff errors in

radial and out of plane velocity are summarized in Table 9. The worst
-I

error in radial velocity is 0.05 ft sec , and the errors in out of plane
-I

velocity are all less than 0.01 ft sec . These good results are due to

the fact that the guidance equations are in the velocity steering mode

for the entire time that the intercept equations are being used. The

equations are designed to stop the search procedure some time before

cutoff is reached, so that the rendezvous time, tT, and position, rT,
becomes constant. The desired velocity then becomes nearly constant,

except for small variations due to errors in predicting the cutoff position.

These variations do not cause any significant problems, as shown by the

above accuracy figures.

The target misses observed at the chosen rendezvous time are

not as small as might be expected from the figures on steering accuracy.
These misses are summarized in Table 10 for the various launch time.

The worst miss is 3908 ft, which occurs at the opening of the launch

window. Because the steering errors are so low, these misses must

largely be attributed to the cutoff routine. The observed misses are

still low compared to what can be expected from IMU errors, tracking

errors, and oblateness effects. The gravity forces due to the earth's

oblateness have been neglected in the computation of desired velocity,

and hence will be a source of target miss. It should also be pointed

out that the miss figures given here are for a fixed time. The miss at

the point of closest approach will be somewhat smaller in every case.

The characteristics of the trajectories flown for various launch

times are all quite different. Only the data on the first trajectory will

be given here to avoid unnecessary detail. The first trajectory was

chosen because the vehicle will always be launched at the opening of
the launch window unless mechanical difficulties have occurred.
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Table 9. Cutoff Errors in Radial and Out of Plane Velocity
for Various Launch Times

Launch Times (A_) (Ag)

-I -I
0 sec

IZ0

240

360

420

0.05 ft sec

0.02

0.02

0.03

0.0Z

0.01 ft sec

0.01

0.01

0.01

0.01

Table I0. Summary of Target Miss For Various Launch Times

Launch

Time

0 sec

iZ0

240

360

420

Z_X

=I, 697 ft.

- 958

+ 408

Ay

+3, II0 ft.

+Z, 747

+2,146

AZ

+I, 398 ft.

-1.426

-I, 303

I, 241

+ 58

+I, 595

+ 202

-I, I24

- 108

Z + ( y)Z + (Az)Z

3,809 ft.

3,240

2, 544

2,312

236

Figure 33 shows the inertial components of v in the vicinity of
g

cutoff. These components are all driven through zero simultaneously,

which again demonstrates the accuracy of the steering equations.

Figure 34 shows the inertial components of the predicted cutoff

position, rD' as a function of time. The very first point has large errors

in it because rD is set equal to P, i.e., there is no prediction. The

curves are then fairly smooth until the staging region. Another discon-

tinuity occurs at the 400 sec point where the intercept guidance is
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initiated. The curves are remarkably smooth, however, considering the

fact that the vehicle is steering towards a parking orbit for the first 400

seconds.

Figure 35 shows the inertial components of desired velocity, Vd'

which is computed at the predicted cutoff position, rD" The initial values

contain large errors because of the error in rD" The jumps at 400

seconds are due to the switch from circular orbit injection steering to

intercept guidance. This change amounts to less than 1,000 ft sec -1,

however, which is relatively small. The small changes occurring past

this time are due to errors in the prediction rountine, which cause _D

to change.

Figure 36 shows the time to go (T) as a function of time. Note the

small jump in T at the 400 second point.

In summary, then it can be stated that the steering equations give

satisfactory performance with respect to fuel consumption and accuracy

when used in the intercept guidance mode.
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7. PERFORMANCE OF INTERCEPT EQUATIONS

7. I GENERAL

The intercept equations are used in any situation where it is desired

to hit an earth satellite having a known ephemeris while using a minimum

of fuel. These equations are used for intercept of artificial earth satel-

lite, for lunar missions, and for Comsat missions. Comsat missions are

handled by requiring intercept of a fictitious earth satellite in the desired

Comsat orbit.

Whenever intercept is required, v will be set to unity in the initiali-

zation equations of the flow charts, which calls into play the free-flight

prediction equations, the p-iteration equations, and the search logic. The

operation of this combination was described earlier in Section 5.3. I. The

final output is the desired velocity, _D' needed at the predicted cutoff

point to hit the target at an optimum rendezvous time, tT. The purpose

of this section is to give some performance data on each of these blocks

of equations, and on the overall combination. The problem of introducing

biases to account for earth's oblateness gravity effects and for lunar

gravitational effects will also be discussed.

7. Z P-ITERATION EQUATIONS

In every case which was tested during the course of the study it was

found that the p-iteration scheme converged to within sufficient accuracy

after six iterations. Table II shows the results of each of these itera-

tions in a typical case where the vehicle is near cutoff on a translunar

injection. The actual difference between tT and tD was ZZ6,163.71 sec.,

so the final value shown in Table II is in error by only 0. Z0 seconds. The

corresponding error in the desired velocity, VD, was less than 0.03

ft. sec "I out of a total of about 36,000 ft. sec -I

In the case considered in Table II the initial value of h D was far

enough removed from the final value that five iterations were required for

convergence. The scheme will generally converge even faster when used

with the guidance equations because the initial value of h D is taken to be

the final value of h D computed on the previous pass through the p-iteration
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Table II. Performance of the P-Iteration Equations

Iteration No.

0

I

Z

3

4

5

T12

Z40,714.4Z sec.

Z38, 806.13

Z26, 854.83

ZZ6,198.8O

Z26,163.91

2Z6, 163.91

h D

7.1900000xi04 km z

7.1907189xi04

7.19548ZZx104

7.1957576xi04

7.195772Zxi04

7.195772Zxi04

-I
sec

equations. On the very first guidance cycle, however, it is always neces-

sary to use an initial guess. This initial guess is denoted by K 3 in the

flow charts. A fixed value of K 3 will generally serve quite well for a wide

variety of conditions. For example, it was foundthat a fixed value of K 3

gave good results at a series of points taken across a lunar launch window

on a direct ascent mission.

Even better accuracy on free fall time, r IZ' is obtained in other

applications. For example, in the case of a low altitude satellite inter-

cept run, the errors inri2 were generally less than 0.001 seconds out of

a total of about 3,000 seconds. All of these figures are, of course,

independent of the errors arising from the use of two body equations to

describe the motion of the vehicle, which neglects the gravity forces due

to earth's oblateness and due to the mass of the moon.

The ratio of the initial value of _h D used in the iteration procedure,

denoted by K 1 in the flow charts, to K 3 is quite mission dependent. For

the low altitude satellite intercept it was found that K 1 = 0.01 K 3 worked

quite well, but such a value was too large on a translunar injection. In

the latter application a value of K 1 = 0. 001 K 3 was found to work satis-

factorily.

7.3 FREE-FLIGHT PREDICTION EQUATIONS

The rate of convergence of the iteration procedure used in solving

Keplers equation was found to be highly dependent on the eccentricity of

the orbit being predicted. Less than three iterations are required for

low eccentricity orbits. However, highly eccentric orbits can require up
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to ten iterations for good results. Table 12 shows a typical iteration

sequence for prediction of an orbit with an eccentricity of 0. 985. The

purpose of these iterations is to solve the transcendental equation

A_. = -S(I - Cos_E) + C Sin AE + AM

for AE. The actual mechanization is carried out by rewriting the above

equation as f(AE) = 0, and then iterating until a value of AE is found

which will satisfy this equation.

Table 12 shows that in this case convergence is reached after

the 8th iteration, even though a somewhat better solution was available on

the 7th. The final solution for f(AE) is not actually zero because of round-

off error in the digital computer. In this case it appears that after the 5th

iteration the solution is essentially unchanged, However, in some other

cases it was found that the use of seven iterations still led to some resid-

ual error, and that ten iterations were actually needed.

The final choice of the number of iterations to be used here will

depend a great deal on the applications to be made of the free flight pre-

diction equations. If they are only used in predicting the position of a

target vehicle then a lower number of iterations might be acceptable,

since most targets will have reasonably low eccentricities. However,

there is the possibility that these equations might also be used as a

Table 12. Performance of the Free Flight Prediction Equations

Iteration No. f(AE)

5

6

7

8

9

10

0 -0.

1 +4.

2 -0.

3 +0.

4 +0.

+0.

-0.

+0.

-0.

-0.

-0.

42208285

68407780

27248116

15442495

01146152

00008622

00000003

00000000

00000001

O0000001

00000001
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navigational aid, in which case they would be required to handle quite

high eccentricities. For the present, it will be necessary to assume a

worst case situation, i.e., that ten iterations are required.

Comparison of these solutions with those of numerical integration

routines are somewhat useless, since they only show up the numerical

integration errors.

7.4 BIAS EQUATIONS

The use of two body equations in free flight prediction and in com-

puting v D will, of course, lead to errors if nothing is done to account for

the gravity forces due to the earth's oblateness and due to the mass of the

moon. These effects can generally be ignored in the case of rendezvous

with an artificial earth satellite, since they are small and can be detected

via radar in the latter phases of the mission. The additional fuel needed

to correct these errors is not a critical factor in such missions. How-

ever, in the lunar mission the effects of lunar gravity on the trajectory

are relatively large, and the amount of fuel available for midcourse cor-

rection is quite limited. Hence, translunar injections require a rather

accurate compensation of these effects. This section describes some of

the work which was done to establish an effective method for making this

compensation.

Figure 37 shows some of the variables involved in the biasing

problem. The location of the center of the moon at the time of impact,

tT, is denoted by R m. The actual cutoff conditions needed to impact the

desired point on the lunar surface, as determined by a complete numeri-

cal integration solution, are denoted as _'D' ?D' and tD. If these condi-

tions are used in the two body prediction routine then the resulting posi-

tion at time tT, denoted as r'T' is displaced somewhat from the actual

impact point. The difference, r'T - _M' is the total bias vector, _. The

b vector gives the required compensation for the earth's oblateness grav-

ity force, and also describes the target location on the lunar surface.

The guidance equations employ the free flight prediction routine to

compute r M for each value of tT. The bias vector, b, must then be added

to r'M in order to obtain the aiming point, r'T" If the prediction of'{M is

correct, and if the proper b vector is added to _M' then the value of VD
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Figure 37. Diagram o£ the Lunar Biasing Problem

7-S



computed by the p-iteration equations will, by necessity, be correct. The

errors in predicting the moon's position and in computing the bias vector

are then pertinent to the accuracy discussion.

The accuracy of predicting the moon's position was tested by com-

paring the results obtained from the free flight prediction routine with an

actual ephemeris over the range of impact times encountered for a single

launch window. The data which was used was that of the Centaur/

Surveyor mission. The particular launch window was that of September 30,

1965. The free flight prediction routine was initialized by using the actual

position and velocity of the moon at the impact time which was closest to

the middle of the impact time range. Table 13 shows the resulting errors

in inertial coordinate for six impact times which just about span the

range of impact times for this launch window. The worst error is less

than 0.5 kin, which is quite satisfactory. The allowable uncorrected soft-

ware miss at the surface of the moon is Z deg for the present guidance

system, which is equivalent to about 60 kin. Judging from these results

it might even be possible to initialize the free flight prediction equation

only once during a launch opportunity of several days, rather than ini-

tializing at each launch window. Further work needs to be done to estab-

lish the time span over which this approach will work.

The b vector was also computed for several impact times during

this same launch window to determine its behavior and to find the simplest

way of representing it. Figure 38 shows the three coordinates of the b"

vector as a function of the impact time, tT, as measured in inertial

coordinates. Figure 39 shows a similar plot of b as measured in a

Table 13. Error in Predicting the Position of the Moon

Case Impact Time AX Ay AZ

1

Z

3

4

5

6

224,147. 358 sec

224,597. 884

Z24,964. 706

ZZ6,164.306

ZZ7,544. 510

2Z9,709. 744

-0.13 Km

-0.14

+0.26

-0-

-0.45

-0.43

-0.08 Km

-0.08

-0.05

-0-

-0.15

-0.38

-0.04 Km

-0.02

-0-

-0-

-0.03

-0.13
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cylindrical coordinate frame which rotates with the moon. There was

some speculation that the b vector might be more nearly constant in the

rotating coordinate frame than in the inertial frame. However, Figure 38

and 39 show that there is no advantage to using the rotating frame. The

inertial representation is much easier to handle in the Airborne Digital

Computer (ADC), and hence was chosen as the preferred mechanization.

The curves connecting the data points in Figure 38 were computed

from the equations

b I =

b z =

K61 + K6z(t T - to)

K63 + K64 (tT - to )

b 3 = K65 + K66 (tT - to) + K67 (tT - t0 )2

which will be used in the A. D.C. to compute the bias vector for a par-

ticular impact time. The coefficients in these equations will, of course,

be dependent on the particular launch window in question and will have to

be recomputed accordingly. The particular values used for Figure 38

were

K61 = 1,843.11 km

-I

K6Z = -0.0166 km sec

K63 = 6,788.0 km

-I

K64 = -0.130 km sec

K65 = 2477 km

-I

K66 = -0.134Z km sec

= 2
K67 -0.222x10 -4 km sec-

The quantity to appearing in the bias equations was chosen to be the same

as the time of initialization of the moon's position and velocity, which in

this case was near the middle of the range of tT values, i.e., at

tT = 2Z6, 164. 306 seconds.

The nominal cutoff conditions employed in this study were obtained

from closed loop runs using the existing Centaur guidance equations,

which led to some impact error at the moon. The lunar latitudes and
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longitudes of the impact points obtained from these cutoff conditions are

shown in Table 14. It can be seen from this table that there is a 3 deg

variation in latitude between the six cases, and a 0. 5 deg variation in

longitude. If open loop nominals had been used, there would be a much

smaller variation in impact position and less difficulty in defining the

target location. As the situation stands, the target can be any point which

has a 2 deg radius sphere about it that contains all the impact points. The

target will thus be chosen to lie at 2.5 deg latitude and 154.5 deg longitude.

These variations in the nominal impact points probably account for at

least part of the error in fitting to the data of Figure 38.

The accuracy of the bias equations was proven by computing the

desired velocity for the same six cases using the free flight prediction

equations, the biasing equations, and the p-iteration equations. The

exact impact time of the nominal trajectories were used for tT values, so

the search logic was not needed. It was assumed that the vehicle was at

the nominal cutoff position and velocity when the computations were made.

A complete numerical integration solution to the equations of motion was

then used to predict the lunar impact point which would result from the

use of this desired velocity. The resulting lunar latitude and longitude

are given in Table 14.

The data in Table 15 follows that of Table 14 fairly closely over the

first five data points. The worst deviation for this set of data is about

0.2 deg. The last point differs by about 2.0 deg in longitude. This

deviation is undoubtedly correlated with the poor fit obtained on case 6 in

Table 14. Lunar Impact Points Obtained From The
Nominal Cutoff Condition

Ca s e Latitude Longitude

1

2

3

4

5

6

A

1. 0813 deg

1. 3284 deg

1.6235 deg

1. 6253 deg

2. 0838 deg

4. 0950 d_'g

353.71 57

353. 7455

354. 0027

353. 6730

354. 1659

354. 0064

deg

deg

deg

deg

deg

deg
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Table 15. Lunar Impact Points Obtained From The
Computed Desired Velocities

Case Latitude Longitude

1

Z

3

4

5

6

A

1.1163 deg

1.3Zll deg

1.4144 deg

1. 6528 deAg

Z. 1145 de_g

3.3870 deg

353. 8444 d'_'g

353. 7784 deAg

353. 722 8 d%"g

353. 7046 d_'g

354. 0339 d%"g

356. 0063 de'g

Figure 38. The fact remains, however, that all the impact points fall

within 2.0 deg of the target, which is acceptable performance. The

deviations from the original data are so small that it appears that if a

consistent set of data had been used initially the final performance would

have been quite good.

7.5 SEARCH LOGIC

The search logic essentially seeks out the t T which minimizes the

fuel consumption of the total rendezvous maneuver for any given set of

initial conditions. The problem is constrained by requiring that the

perigee altitude be kept above a certain minimum level.

In the original guidance equations of Reference 3 the search logic

was initialized every guidance cycle and allowed to complete fifteen

iterations. However, it was found that this number required too long a

computing time, and did not give good convergence. The values of t T

were still changing enough near cutoff to cause changes in desired velocity,

which led to some steering error. Hence, the logic was changed so that

the equations were initialized only once during a given burn, and only

three iterations were made per guidance cycle. This procedure reduced

the computing time, and also caused the search logic to converge to its

final answer well before cutoff occurred. In fact, in the intercept runs

discussed earlier the search logic usually converged to its final answer

within 10 seconds after the start of intercept guidance. The fuel con-

sumption with this type of operation was no worse than with the original

equations.
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In order to determine whether the search logic could be used suc-

cessfully on a translunar injection, a separate A-shot program was set

up which contained only the free flight prediction equations, biasing equa-

tions, p-iteration equations and the search logic. No vehicle dynamics

were included in this program, so it was necessary to enter position and

velocity as additional inputs. The cutoff values of position and velocity

at the same six points used in the lunar biasing study were employed

here. The search logic was then used to find the optimum value of t T and

the corresponding desired velocity, v D. The program was allowed to go

through30 iterations. The object was to determine whether the program

could find its own value of t T for various launch times, and whether this

value would be close to that of the nominal trajectory. It was also ques-

tionable whether the biasing equations would work properly for slightly

non-nominal values of t T. The coefficient values used in these runs are

shown in Table 16.

The resulting values of t T are shown in Table 17, along with the

values from the nominal trajectories. It is clear from this table that the

worst deviation in t T is only 63.5 seconds, which is small compared to

Table 16. Coefficient Values for A-Shot Runs on Translunar Injection

K 1 = 7.19Km 2 sec-I

K2 = 5

K 3 = 71900 Km 2 sec -I

K 4 = 3600 sec

K 5 = Z26,164. 306 sec

KI0 = 500 sec

KI3 = 6475.6 Km

KZZ = 3600

K30 = 30.0

K31 = 0. 050

r° = 108,723.76; -346,204.17; -174,909.96 Km

= 0. 93719Z89; 0.Z4830374; 0.03332489 Km sec-
O

t = ZZ6, 164. 306
O

v = 1
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Table 17. Values of t r From Nominal Trajectories
And From A-Shot Results

Case

1

2

3

4

5

6

Nominal

tr

224. 147.36 sec

224. 597.88 sec

224,964.71 sec

225,164.31 sec

227,544.51 sec

229,709.84 sec

224,147.12 sec

224,590.09 sec

224,901.22 sec

226,166.85 sec

227,536.18 sec

229,729.93 sec

the total variation in t T of over 5,500 seconds. This deviation does not

represent a direct error either, because the position of the moon will

still be computed properly for that time, and the p-iteration equations will

give a proper value of _D for the computed_T. This deviation may, how-

ever, cause some indirect error through the bias equations.

Table 18 shows a comparison between the nominal cutoff velocities

and the v D vector computed by the A-shot program. The worst deviation
- 1is 0.0014 km sec 1 which is about 4.6 ft sec- It must be remembered

that this is not all error, since the routine chooses a slightly different

impact time, which requires a different velocity.

The lunar impact points obtained from the A-shot _D values are

shown in Table 19. These points are very close to those of Table 13.

Assuming again that the target lies at Z. 5 deg latitude and 354.5 deg

longitude, the impact points all fall within a 2 deg circle centered at the

target. Therefore, the procedure meets the accuracy requirements

imposed on the present software.

Figure 40 shows the iteration pattern obtained for case 4 when using

the A-shot program. Only the first 15 of the 30 iterations are shown here,

because the data density becomes too high after that. The minimum point

on this curve is quite clearly defined, and it can be seen that the data

points are rapidly approaching this minimum. The actual operation in the

guidance computer would be somewhat different, however, because only 3

iterations would be made per guidance cycle. Also, the _v curve would
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Table 19. Lunar Impact Points Obtained from the Vd Vectors

Generated by the A-Shot Program

Ca se Latitude Longitude

1

2

3

4

5

6

I. 1076 deAg

I. 2847 de"g

1. 4493 deg

1. 6491 de_g

2. 1376 de_g

3. 2943 deg

353. 8209 de_g

353. 7029 d_'g
_=_

353. 8086 deg

353.7059de"g
354. 0450 de"g

355. 9832 de_g

be different on each guidance cycle because the required Av is decreasing

as the cutoff time is approached. The curve of Figure 40 is stillrather

helpful in visualizing the operation of the search logic.

It appears, then, that the search logic will give satisfactory

performance on the translunar injection, as well as on the low altitude

satellite intercept mission.

k
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. STABILITY INTERFACE OF GENERALIZED EXPLICIT
EQUATIONS WITH THE CURRENT ATLAS]CENTAUR

CONTROL SYSTEM

A separate study was conducted at TRW Systems by J.P. Ivaska of
G

the Performance Analysis Section of the Control Systems Department.

The purpose of this study was to determine what, if any, interface prob-

lems existed when explicit guidance techniques were used with the current

Centaur Control System. The report on this quite extensive study is

included in this report as Appendix A. The plan of the study was to

investigate the interface problem in two parts: The first, to determine

whether explicit equations in the guidance loop fundamentally degrade

the Centaur Control System performance seriously. The second to

evaluate the effect of the explicit equations on the Centaur Control System

with consideration given to the actual digital nature of the guidance loop.

In the first part the guidance equations used were a linearized

version of those presented in this report, and the control system model

was a linearized version of the Centaur Control System. The objectives

of the first part of the study were pursued using a linearized analysis,

with the conclusion that the incorporation of explicit guidance results in

very little degradation of system stability prior to the approach of

injection. However, as the time to injection becomes short the important

stability margins are considerably reduced, though no instability results.

The reason for this behavior can be appreciated by noting that the attitude

commands as generated by guidance vary inversely with the time-to-go

until engine cutoff. Thus attitude commands changes tend to be more

extreme near cutoff than further away resulting in greater demands being

put on the control system. In terms of the linearized analysis performed

in Appendix A, the reduced values of time-to-go are shown to result in a

higher gain constant in the linearized guidance loop, thus producing the

degraded stability characteristics.

The second part of the study was performed by utilizing a sample

data simulation. This simulation was capable of representing both the

continuous nature of the control system dynamics as well as the digital
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nature of the guidance loop. The sampling periods were varied from I

through 20 seconds for the case just prior to injection. The situation just

prior to injection was chosen as a result of its relative criticality as indi-

cated by the results of the first part of the study. The simulation showed

that sampling times of up to 5 seconds were satisfactory but that instabil-

it7 occurred when longer sampling periods were used.

The results of this guidance-control interface study thus showed that

the use of the type of explicit equations presented in this report does not

cause serious problems of control as long as the guidance loop sampling

periods are kept to about 5 seconds or less.

These timing limitations have the following implications:

i) An advanced flight computer (such as the LEM AGS)

will have no speed problems performing the computa-

tions for the complete generalized equation package.

Table 5 gives a maximum timing requirement of less
than 0.1 second which is of course well below the 5

seconds required from the above stability analysis.

2) The current Centaur computer would take more than

13 seconds (See Table 5) to perform the powered

flight computations for intercept problems which is

well beyond the stability limit of 5 seconds. Thus the

current Centaur computer could not accommodate the

complete generalized equation package.

3) From Table 5, it can be seen that if intercept guidance

is deleted from the equation package, the timing

requirements using the current Centaur computer are

Z. 8 seconds which is within the 5 second limit. Thus

if intercept guidance were not included in the overall

capability of the equation set, the current Centaur

computer would not be ruled out for reasons of insuf-

ficient speed.
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9. CONCLUSIONS

The most important conclusions that can be drawn from this equa-

tion study and the related tasks performed within the Advanced Centaur

Study are as follows:

I) The use of generalized equations to provide guidance

for a multipurpose space system employing the Centaur

vehicle together with the Atlas lower stages is feasible

provided advanced computer hardware is supplied.

2) The use of explicit guidance techniques, as described

and analysed in this report, provide high flexibility

and long term economy with more than adequate

performance accuracy for the generalized guidance

purposes.

3) The current Centaur -3 Librascope computer might be

able to handle a version of the generalized equations

which did not include an intercept guidance capability.

However, to do this the -3 would have to be modified

to permit use of the entire memory during flight, and

even then the squeeze would be tight.
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I0. FLOW CHARTS

The flow charts presented in this section are the mechanizations of

the equations derived and discussed in the body of the report. The com-

puter requirements estimates of Section 4.1 were made from these flow

chart s.

The flow chart number and title are listed below.

Flow Chart

1) Initial Guidance Loop Computations

2) Free Flight Prediction

3) P-Iteration

4) Search Logic

5) Cutoff Velocity Prediction

6) Exo-Atmo spheric Steering

7) Error-Signal Equations

8) Cutoff Routine

9) Coast Trajectory Termination

10) Maneuver Sequencing

11) Atmosphere Steering

12) Navigation Equations

13) Atmospheric Navigation Parameters

14) Compensation Equations

10-1
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K23 -- K23

!

K24 = K24

v_ K25 = K:_5

Rp I Rp

TT = 0

v = 1

ii TT 0

I

K30 K30

_ -! _A:_ I "
I

K23 = K23

I

K24 = K24

I

K25 = K25

I = I o

Rp Rp

i=i '

v = 0

TT = 0

bb = 1

Flow Chart I0. Maneuver Sequencing
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11. NOMENCLATURE

a

all, a12

aa

af

a
g

a
o

a T

a !
s

a
s

A, B, Bls D

A'sB'gC'9 D',E',F'

A' A' A'
X_ y, Z

b

blsb 2, b 3

bb

C

Cl-C 6

CZ7 "C35

Cax,eay,Caz

semi major axis of conic (p-iteration)

elements in transfornlation from platform to
pitch plane oriented inertial system matrix

0 if coast trajectory is rendezvous or Corn-Sat

parking orbit

I if coast trajectory is interplanetary parking
orbit

2 if coast trajectory is translunar parking orbit

semi-major axis of conic (hyperbola or specified
ellipse)

semi-major axis of earth's reference ellipsoidal

semi-major axis of target's orbit

magnitude of thrust acceleration

acceleration level at which BECO occurs

sensed acceleration

steering coefficients

= Auxiliary variables in cutoff routine

= Components of acceleration in earth fixed system

= lunar offset bias vector

= icoefficients in biased lunar position vector determination

0 if coast trajectory is parking orbit
=.

!1 if coast trajectory is intercept orbit

= coefficient used in free flight predictor

= variable used in p-iteration

= Atmospheric steering coefficients

= direction cosines of desired acceleration with

respect to i j k frame

II-i



CWaxj CWay, CVaz

Ca_ 'Ca_'Ca_

e

f

fd

fT

!

fT

I!

fT

Gx, Gy, G z

h

h d

i
P

i,j,k

tRp

i I
Rp

Ip, ly

J

= Direction cosines with respect to earth
fixed system

= direction cosines of desired acceleration

with respect to vehicle fixed axes

= eccentricity of conic

= true anomaly

= desired true anomaly

= cosine of true anomaly of F T or "_

= cosine of minimum angle between injection

and target vector {rT or 3)

= cosine of maximum angle_bet_veen injection

and target vector {rT or S)

= Component of gravitational acceleration

= angular momentum

= desired angular momentum

= counter in coast trajectory termination
routine (monitor mode)

= unit vectors along computational coordinate
axe S

= unit vector in perigee direction of first

specified conic

= unit vector in perigee direction of second
specified conic

= integral of 8pE and OyE respectively

= unit vector normal to desired orbit plane
of first conic

= unit vector normal to desired orbit plane
of second conic
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J

.Jz,J4

k

K

K 1

K z

K 3

K 5

K 6

K 7

KI0

KII

K1 z

K13

KI4

K15

K16

K17

K18

K19

KZ 1

= variable used in p-iteration counter

- Coefficients in spherical harmonic repre-
sentation of earth's potential

= variable used in search procedure counter

= counte r

= initial increment on h D for p-iteration

= number of iterations to be used in p-iteration

= initial guess on h D to be used in p-iteration

= initial value of t T to be used in search logic

= velocity change capability of both stages

= velocity change capability of second stage

= initial increment on t T to be used in search
procedure

= reciprocal of initial sustainer acceleration

= reciprocal of initial Centaur acceleration

= limit on Rp to be used to switch from search
on Rp to search on _V in search procedure

= value of T for switching to constant coef_-
cient steering

= limit on r for atmospheric steering
equations

= limit on T for entering cutoff routine

= velocitychange'£apability of sustainer

= exhaust velocity of sustainer

= exhaust velocity of Centaur

= ratio of mass to mass flow rate at sustainer

fuel depletion
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K23

K_3

KZ4

54

KZ5

K30

Kz7-K33

K34

KSI

K5 z

K55

I<61 -K67

K71

K97

K100

Kll 0

Kll5

KZ00

K210

semi major axis of first specified conic

semi major axis of second specified conic

eccentricity of first specified conic

eccentricity of second specified conic

semi latus rectum of first specified conic

semi latus rectum of second specified conic

number of iterations in search procedure

atmospheric steering constants

180 degree test in p-iteration

rate command proportionality constant

gain for integral control loop

time at which steering to inject into desired

orbit is initiated

lunar intercept offset constants

limit on At for entry to steering

maximum ratio of Vc
Ve

cosine of maximum allowable true anomaly

at injection

cosine of minimum allowable true anomaly

at injection

velocity capability pad

sine of maximum allowable true anomaly

at injection

sine of minimum allowable true anomaly at

injection
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ZN

Kp

KxD, KyD, KzD

K ,K ,K ,K
xx xy xz yx,

Ky z ,Kzz, Kzx, Kzy

I

LxB, Ly B ,LzB

Lxx, Lyy, Lzz

m

M A

P

Po

P

r

rox' roy' roz

r

P

rT

ru_ rvW r w

= Null factor

= Euler angle scale factor

= compensation constants for non-g sensitive
gyro drift

=_

compensation constants for attitude rate scale
factor errors

variable used in search procedure counter

compensation constants for accelerometer
bias

compensated scale factors for
,accelerometers

variable used in free flight predictor counter

0 for interplanetary mission (two burn) or
pre-targeted lunar mission (two burn)

1 for rendezvous mission and in flight
targeted lunar mission (two burn)

Z for corn-sat mission (three burn)

3 for redefined internally in guidance program
for three burn corn-sat misiion

semi-latus rectum of conic

variable used in search logic

component of position normal to pitch

plane

period of transfer ellipse

171

Initial components of position in equatorial

oriented inertial system

radius of perigee on transfer orbit

= components of r
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ruo p rvo J rwo

r'u, r'v, r'w

rluo_ rlvosrVwo

_D

r
e

r
o

m

rd

r
o

r
po

rT

m

r
t

components of position at launch of launch

site in platform coordinates

components of F'

components of r'
0

desired radial velocity at cutoff

"_f

0

present position vector in platform
coordinate s

position vector in equatorial oriented

inertial coo rdinate system

ILl

predicted cutoff position vector

(rpo)u' (rpo)v' (rpo)w =

(rx).(ry),(rz) =

S ..

sT =

=

position vector of target vehicle at t
0

position vector of lemnch site at "go inertial"

in platform co ordinate s

position vector of target vehicle at t T

target vector for pre-targeted translunar
ellipse

position vector in pitch plane oriented inertial

coordinate system

position vector of launch site at "go inertial"

in pitch plane oriented inertial coordinate

system

components of
po

components of position in equatorial oriented
inertial system

constant used in free flight predictor

sine of true anomaly of rT or §

unit vector in direction of outward assymptote

= present time
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t 1

t 2

tll

t D

t
e

t 1

t
O

t T

T

T

T R

T
S

TT

v 2

v
c

V D

v
g

v
O

Vox* Voy* VOZ

v T

= time of ignition of sustainer

= time of first ignition of Centaur

= time {from liftoff)at which liftoffroll maneuver ends

= predicted time of cutoff

= time since "go inertial"

= time of launch

= time of last ephemeris of target vehicle

= time of rendezvous with target

= time to go until cutoff

= transformation from platform to pitch plane oriented

inertial coordinate system

= transformation from platform to equatorial oriented

inertial coordinate system

= time to go until sustainer burnout

IO if Centaur guidance is terminated= I if Centaur engine will re-ignite

: ]VT - _I

= velocity consumed

= desired velocity vector

= l gl

= I-%1

- Initial components of velocity in equatorial oriented

s ystem

: velocity vector of target at tT
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= components of
VuP VvP V W

v = components of velocity at launch of launch site in
Vuo'Vvo ' wo platform coordinates

Vx*Vy*V Z
= components of _ along _ ]k respectively

V'u,V'v,V' w : components of _'

m

V'uo,V'vo,V'wo =-components of v'°

V : present velocity vector in platform coordinates

w

V
e

: velocity vector in equatorial oriented inertial

coordinate system

V

g
velocity to be gained vector

m

V
rn

: location of center of moon at impact

v : velocity vector of target at t
0 0

V

po
: velocity vector of launch site at "go inertial" in

platform coo rdinates

V t : velocity vector in pitch plane oriented inertial

coordinate system

0
: velocity vector of launch site at "go inertial" in

pitch plane oriented inertial coordinate system

v' T : velocity vector of vehicle at tT on transfer orbit

(Vpo)u' (Vpo)v' (Vpo)w -= components of Vpo

V
S

= velocity remaining in sustainer stage

V'x,V'y, V' z
: components of velocity earth fixed coordinate

system

(Vx), (Vy), (Vz): components of velocity in equatorial oriented inertial
system

W : dummy variable used in search logic

W : previous value of W
0
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x,ysz

YD

YD , z D

_f

:D

]
T

] 'x, Y'y,T'z

m_D

= components of _ along i j k respectively

= desired velocity along j direction at cutoff

= components of YD along j and k axes respectively

= unit vector along desired thrusting direction

= unit vector normal to r D and j

= unit vector in direction of r
O

= unit vector normal to 1R lying in plane of rD
and YT

=_ unit vectors along x' y' z' axes respectively

11-9



V

1_.

6

AB D

&t

At
c

&tf

At T

&v R

&V

AV R

AV x, AVy, AV z

AV x, AVy, AV z

= magnitude of At T in search procedure

u I 1 iterate on 2_V in search procedure
I 0 iterate on r in search procedure

P

= reciprocal of thrust acceleration of sustai;,,

= flight path angle

= reciprocal of thrust acceleration of Centau,

= Euler angle outputs

= scaled Euler angle outputs

= steering constant

= change in eccentric anomaly

= change in hD

= change in mean anomaly

- guidance computation cycle time

= guidance cycle time

= time increment used in cutoff routine

= change in tT

= velocity remaining in both stages

= total velocity change needed to complete

Centaur mission from present state

= velocity capability remaining in Centaur

= uncompensated incremental velocity com-
ponents in platform coordinates

= referenced accelerometer output in platfor,
coordinate s
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AVxi, AVyi, Z_Vzi

AV
C

_V
S

(AGx), (AGy), (AG z) =

(aVsu), (AVsv), (aVsw) =

ACt x, ACt , ACty z

A_xA, A_y A, AazA

A_xg, A_yg, A_zg =

A_xi, A_y i, A_zi =

Au =

A8 =

E

E

ByE, 8pE, 8RE

T12

k

_s

= accumulated raw accelerometer output in
platform coordinates

= velocity increment in platform coordinates

- velocity increment in computational coordi-
nate s,

components of integrated gravity increments

components of sensed velocity in platform
coordination

= compensated commanded incremental rota-
tional components

= commanded rotational increments

gyro referenced output

raw gyro output

angle between alignment azimuth and launch
azimuth at "go inertial"

predicted change in central angle during

powered flight

1 if T > K 14

0ifT -<K14
tation

and on initial guidance compu-

1 if prediction of burnout position is desired= 0 if prediction of burnout position is not
desired

= yaw, pitch, roll angle errors

I hyperbola= -I ellipse

= predicted time of free flight

= _ 0 sustainer engine
I 1 Centaur engine

universal gravitation constant times mass of
earth
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w2

_x' gy' _x' "qx' _y' "qz'

gx' gy' g_

q_

¢

_2

(I if intercept guidance is desired

= _0 if hyperbolic or specified ellipse

_guidance is desired

_i if steering is to null velocity errors only

= 40 if sterring is to null both position and
K.velocity errors

= unit vectors along vehicle roll, yaw, pitch,

axes respectively

= elements of guidance to vehicle coordinate
transformation matr ix

f 1 engine on
\ 0 engine off

= central angle between r-D and _'r

= roll, yaw, pitch rate commands

f _00__f_w
\ _0 w_f_Zw
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System Interface for Atlas/Centaur

,ROY: J. P. Ivaska, Jr.
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REFERENCES : I.

2,

4222-6034-K0000, "Guidance Equations for Advanced Centaur

Guidance System Study," R. P. Davis and C. M. Staley,

7 June 1965

GD/A-DDE65-00_ (General Dynamics/Astronautics document), "Flight

Dynamics and Control Analysis of the Centaur Vehicle (Atlas/

Centaur AC-5 )," K. C. Bcaine, January 1965

I. S_4ARY

This investigation analyzed the Atlas/Centaur guidance-control interface

problems associated with the incorporation of theexplicit guidance scheme

developed in Reference i. This preliminary study was divided into two distinct

sections.

The first was conducted under the assumption that the guidance commends src

updated continuously; it showed that explicit guidance loop would not degrade sy_

tem stability excessively. The second section evaluated the effects of the digi-

talnature of the guidance loop; it determined that the stability degradation

remains tolerable withthis more realistic representation of the guidance loop.

This analysis also showed that the range of guidance loop sampling periods which

yield acceptable system stability characteristics is between zero and five seconds.

The conclusions of this preliminary study are: (i) from a control system vie_

point, the explicit guidance scheme can be incorporated into the Atlas/Centaur

vehicle;and (2) the guidance conmmnds should be updated at least once every

five seconds.
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II. INTRODUCTION

A. General

TRW Systems Group is conducting a study program in support of Atlas/Centaur

for the National Aeronautics and Space Administration, Lewis Research Center,

under Contract Number NAS 3-B231. The program consists of six major tasks, most

of which are concerned with guidance of Atlas sustalner or Centaur stages. This

report contains analysis supporting Task VI, one objective of which isthe develop-

ment of a set of explicit guidance equations for use during exoatmospheric flight.

The analysis is de_oted to an investigation of the guidance-control interface pro-

blems caused by the incorporation of this explicit guidance scheme into the Atlas/

Centaur vehicle.

B. Background

For the purposes of stability analysis, guidance equations may be classified

into two very general divisions. One class consists of open-loop guidance schemes;

the commands generated are functions only of time, not of any quantity describing

vehicle state.

A second class consists of closed-loop guidance schemes; the commands are

functions of vehicle state, though they may also depend on time. Within this

class are two further classifications. One is delta guidance equations; the com-

mands are functions of the differences between certain vehicle state variables

and the corresponding desired end conditions. The key equation of such a scheme

is usually a truncated power series. The second classification is comprised of

explicit guidance methods, which are dependent on present vehicle state and which

use equations in closed form.

The two basic classes, open- and closed-loop guidance schemes, differ markedly

in their impact on system stability characteristics. Because a closed-loop guid-

ance approach is dependent on certain vehicle state variables, some of which may

be measured and used by the control system, its incorporation may alter vehicle

stability characteristics. Experience has shown that system stability is generally

degraded by inclusion of closed-loop guidance. However, an open-loop guidance

scheme, which utilizes no vehicle state information, does not change vehicle sta-

bility characteristics.
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For the samereason, the two classes also differ strikingly in their capability
in handling non-nominal situations. Open-loop guidance does not sense off-nomlnal

conditions and cannot correct for them. Closed-loop guidance is sensitive to

variations from nominal and, therefore, includes possibilities of compensating for
them.

Whenevera new closed-loop guidance approach is proposed, it must be evaluated

with respect to several considerations. It should possess certain capabilities

which can be assessed without regard to guldance-control interface problems. Among

these is the capability to minimize off-nominal errors. However, it is equally
important that its effects on system stability characteristics be tolerable.

The present Atlas/Centaur uses closed-loop delta guidance equations. However,

a set of closed-loop explicit guidance equations has been developed under Task Vl

for use on later Atlas/Centaur vehicles; the derivation is presented in Reference 1.

Its various attributes are presently being investigated, and important amongthese
is the impact of its incorporation on system stability characteristics.

C. Objectives of Study

The basic objective of this study is to evaluate interface problems between

the explicit guidance scheme of Reference i and the vehicle control system. The

incorporation of this guidance method must not result in excessive degradation of

vehicle stability.

There is an additional aspect to the problem. The guidance equations are to

be implemented digitally; this raises the question of how often the guidance com-

mands should be updated. Generally, the more frequently the updating is performed,

the less stability characteristics are degraded. This implies that there exists

a minimum allowable sampling frequency which can be formulated Just on the basis

of vehicle stability considerations. An evaluation of the interface between guid-

ance and control must include the development of such a requirement.

III. GENERAL APPROACH

This section presents the approach used to evaluate the guidance-control

interface problems resulting from incorporation of explicit guidance into Atlas/

Centaur. Details of the actual analysis are deferred until later sections. Through
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the procedure outlined below, it was possible to determine whether the explicit
guidance schemecan be used in Atlas/Centaur without intolerable alterations in

vehicle stability.

A. Choice of Trajectory

The Atlas/Centaur explicit guidance scheme is designed to accommodate a wide

class of possible trajectories. However, to make the problem tractable, a typi-

cal trajectory had to be selected. This is not a serious limitation on the value

of the analysis since the guidance-control interface problems were not expected

to be greatly trajectory dependent. The trajectory chosen for this study should

not be extreme and should be typical of missions projected for future Atlas/

Centaur missions.

B. Stability Analysis for Vehicle Without Closed-Loop Guidance

After the trajectory selection, the next step was to evaluate vehicle

stability characteristics in the absence of open-loop guidance. This provided a

basis for comparison through which subsequent results were evaluated. First, it

had to be decided whether the analysis was to be conducted in the pitch plane or

in the yaw plane or whether studies for both planes were necessary. After this

decision, the following tasks were performed.

i. Linearization of System Equations

In launch vehicle or missile design, stability investigations are generally

started by linearizing the vehicle total equations. The resulting set of linear

differential equations characterize system behavior in the small. Coefficients of

the equations are fixed at values corresponding to critical flight times, and con-

ventlonal linear control system techniques are employed to derive vehicle stability

portraits. The basic assumption is that the rate of change of the coefficients

of the equations is low compared to the frequencies of interest, usually an easily

Justifiable assumption.

Since the primary purpose of this analysis_asto examine the guidance-control

interface, related topics such as slosh limit cycle and actuator nonlinearities

which may affect the basic system characteristics were ignored. These effects

should be examined later in more detailed studies.
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2. Choice of Flight Times

In launch vehicle and missile control system design, particularly for atmospheric

flight, the choice of flight times for which to evaluate system stability is compara-

tively straightfor_ard. Those generally selected are Liftoff, Max-Q (the time of

flight at which aerodynamic pressure is maximum), Burnout, and flight times when

gain changes occur.

For this problem, the choice of flight times is not as clear, for two reasons.

First, the explicit guidance scheme is not used until the excatmospheric phase

of flight, which eliminates several of the above possibilities. Second, the times

selected should be those when the guidance scheme-control system interface problems

are comparatively severe, which is difficult to estimate a priori.

A reasonable solution is to spread all but one of the selected times of

flight fairly evenly throughout the period of use of the explicit guidance scheme

and choose the remaining flight time near the end of that period. Experience has

shown that incorporation of a closed-loop guidance scheme generally results in

greatest degradation of vehicle stability characteristics near the end of its employ-

ment, when the matching of boundary conditions is completed.

S. Linear Analysis

After linearization of system equations and choice of flight times, conventional

control system techniques were used to obtain the appropriate stability portraits.

Gain-phase plots were used, and values of critical stability margins were read

from these. The details of the use of the gain-phase plot and the significance

of various stability margins are explained in Section 5.2.

C. Stability Analysis for Vehicle Incor2orating Explicit Guidance

Tasks similar to those described above were also completed for a vehicle

including explicit guidance3 so that the severity of guidance-control interface

problems could be assessed.

I. Linearization of Guidance Equations

The linearization of system equations for a vehicle without closed-loop guid-

ance is comparatively straightforward, because the dynamic and control system
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equations for different launch vehicles are similar in form. However, different

guidance schemesgenerally use far different sets of total equations, and the

linearization of sets of guidance equations _ast be done individually.

After completion of guidance equation linearlzatlon, a complete set of small-

angle equations was available for a vehicle including explicit guidance. Stability

portraits were then obtained for such a vehicle for the flight conditions previous-

ly selected.

2. Comparison of Results

Comparisons of corresponding stability portraits determined the severity of

the guidance-control interface problems. The results can dictate whether the
explicit guidance approach can be incorporated into the Atlas/Centaur without in-

tolerable degradation of vehicle stability.

The representation of the guidance loop in these foregoing analyses was con-

tinuous. In actual fact, the guidance commandsare computeddigitally; this

meansaggravation of any interface problems. The above comparison simply deter-

mines whether the explicit guidance can be included in the somewhatidealized case

for which the guidance commandsare updated continuously.

3. Determination of Minin_amAllowable Sampling Frequency

To complete the examination of guidance-control interface problems, a minimum
allowable frequency for updating the guidance commandsmust be established. There

exists no standardized procedure for this task, but it should begin with an exami-

nation of the previous results.

For the flight times for which the introduction of continuously updated

explicit guidance caused little degradation of stability characteristics, signi-

ficant alteration because of sampling effects in the guidance loop is very unlikely.

However, for each flight time for which there is considerable degradation for a

continuous representation of the guidance loop, a further analysis should be con-

ducted to determine the lowest sampling frequency which results in adequate system

stability. If there is more than one such flight time, the highest such sampling

frequency must be used so that satisfactory stability characteristics exist for
all flight times.
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IV. ANALYSIS

This section provides the details of the analysis, the structure of which is

outlined in the preceding sectioa.

A. Selection of Trajectory

The trajectory selected for this study places the payload in a 580=nautical

mile circular orbit. The flight is divided into three distinct segments. The

first is Atlas booster flight, which extends from Liftoff to Booster Engine Cut=

off (_EC0), at i_0.09 seconds after Liftoff. Atlas sustainer flight is the second

phase; it extends from_COuntilSustainer Engine Cutoff (SECO), which occurs at

238.07 seconds after Liftoff. The third phase is Centaur flight, lasting from

SECOuntilMain Engine Cutoff (MECO), nominally at 566.25 seconds after Liftoff.

The explicit guidance scheme is designed for operation during portions of

the flight when aerodynamic forces are no longer significant. It is initiated

whe_ the vehicle achieves a certain prespecified altitude. This occurs during

sustainer flight, the exact flight time being dependent on the altitude selected.

Consequently, this explicit guidance scheme is used from some point in the sus=

tainer phase until MECO. The period of time between Liftoff and MECO listed above

is nominal; for particular flights, non=nominal conditions can cause a change in

that time in accordance with the action of the explicit guidance methods.

B. Stability Analysis for Vehicle Without Ex_liclt _Aidance

The following discussion presents the stability characteristics for anAtlas/

Centaur launch vehicle which does not include any form of closed-loop guidance.

It provides a basis for comparison by which the effects of explicit guidance on

vehicle stability can be evaluated.

All analyses were conducted in the pitch plane, as it was Judged that the

guidance-control interface problems are more severe there than in the yaw plane.

For the latter plane, the purpose of the guidance loop is simply to maintalnthe

vehicle within the desired flight plane; no trajectory shaping is needed. How-

ever, in the pitch plane, trajectory shaping is required, because the vehicle must

be placed in a prespecified orbit.
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i. System Descriptions

First, the system representations used for analysis of Atlas sustainer and

Centaur phases should be presented. The vehicle dynamic equations are very simi-
lar to manysets previously used in launch vehicle and missile design but are

considerably simplified by the fact that aerodynamic forces are insignificant.

The set summarized in Section 5.1 is applicable to both sustainer and Centaur

phases. The control systems used for the two phases differ considerably and are

responsible for the fundamental differences in system descriptions.

a. System Description for Sustainer Phase

Figure 1 is a conventional block diagram applicable to sustainer phase with-

out closed-loop guidance. The control system gains differ from those used for

Centaur flight, but there are only two essential differences between that diagram

and the corresponding one for Centaur phase. The first is the inclusion of the

25-radian-per-second simple lag filter for sustainer phase; no filtering is used

during Centaur flight. The second is that the effects of gyro dynamics may be

neglected for sustainer phase.

For both phases, the engine actuator hydraulics were simulated by a simple

lag; the time constants for the two segments of the trajectory differ slightly.

b. System Description for Centaur Phase

Figure 2 is the system block diagram for Centaur stage _ithout closed-loop

guidance. Gyro dynamics must be included for this phase, because the gyros in

the two control systems differ considerably. The dynamics of the Centaur gyro,

an overdamped type, become significant at a frequency _ch lo_mr than the corres-

ponding frequency for the Atlas gyro; experience has sho_n that the degradation of

vehicle stability due to incorporation of closed-loop guidance is generally con-

centrated at low frequencies. Because the Centaur gyro is an overdamped type, its

dynamics may be sin_lated by a simple lag. The time constant, as given by Refer-

ence 2, is 0.03 seconds.

2. Flight Times Selected

Before the system stability portraits can be obtained, the flight times N_st

be chosen for which to conduct the linear analyses. In accordance with the
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philosophy explained in the previous section, the following four times of flight
were selected: (1) 200 secondsafter Liftoff, approximately at the midpoint of

the sustainer phase; (2) 360 secondsafter Liftoff, approximately at the midpoint

of the period of use of the explicit guidance scheme; (3) 520 seconds after Lift-

off, during the latter portion of that period; and (M) 560 seconds after Liftoff,

nominally Just 6.25 seconds before MECO.Table 1 gives the vehicle dynamic para-

meters for these times of flight.

3. Stability Portraits

Figures 3 through 6 showthe system stability portraits for a vehicle with-

out closed-loop guidance for the above four times of flight. The graphs are

gain-phase plots of the frequency responses of the transfer functions from com-

mandedengine actuator angle to control system output. System stability margins

may be read from these graphs and are listed in Table 2. (Section 5.2 discusses

the use of such galn-phase plots for analysis of exoatmospheric flight of launch

vehicles or missiles; it also presents desirable values for the various stability

margins.)

A comparison of the galn-phase plots for the latter three times of flight

shows that the shapes of the three graphs are identical and that the only dif-

ferences are in the location of the zero-decibel llne. This reflects the fact

that the only differences in the three systems of equations are in the value of

the control coefficient (_c) , to which the loop feedforward gain is linearly

related. The control coefficient increases with time during Centaur flight,

because the engine thrust remains constant and vehicle moment of inertia decreases;

the result is that both low-frequency gain margin and rigid body phase margin

increase with time from their relatively low values for 360 seconds after Liftoff.

High-frequency rigid body gain margin decreases with time but is always more than

adequate throughout exoatmospheric flight.

C. Stability Analysis for Vehicle Incorporatin_ Explicit Guidance

This portion contains the stability analysis conducted for an A/C vehicle using

explicit guidance. A procedure vas followed that is very similar to that used

for an Atlas/Centaur _dthout closed-loop guidance.
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T(time after

Liftoff-sec )

, J' ,,

2OO

360

5zo

_6o

ac(nlsec2)

33.8

• , L

_c(Sec-2)

=,, =u, i

3.3_
3.13

_:73

_o(ft)

32.0

15.3

li,.6

Table 2. System Stability MJ_rgins for a Vehicle

Without Closed-loop Guidance

T(time after

Liftoff-sec )
i ,

2OO

360

• yzo ....
56o

Low-frequency Gain

Margin (db)

i

22._
7.1

9.6

10.8

Rigid Body Phase

Margin (deg)
High-frequency Rigid
Body Gain Margin (db)

m ,,,

_.o 21.3

_._

29._,

_._

_1.6

29.0

27.9
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1. System Descriptions

The first task was linearization of the guidance equations so that an entire

set of perturbed equations was available for a vehicle with explicit guidance.

The details of the derivation are presented in Section 5.S, but the results are

summarized in Figure 7. The natures of the llnearized models of the guidance

loop for sustainer and Centaur phases are identical, and the values of the

linearized coefficients are given in Table 3.

2. Stability Portraits

Figures 8 through Ii are the stability portraits for a vehicle _,_th explicit

guidance for the four flight times. Each is a gain-phase plot of the frequency

response of the transfer function from commanded engine actuator angle to control

system output. The stability margins are listed in Table _ and can be compared

with the corresponding figures for an Atlas/Centaur without explicit guidance.

3. Comparison of Results

The corresponding stability margins were compared for two purposes; the most

important _as to determine whether explicit guidance can be integrated into Atlas/

Centaur under the idealized condition of continuous updating of guidance conmmnds.

The second purpose was to determine which times of flight should be subjected to

further analysis for derivation of minimum allowable sampling frequency.

The changes in stability margins are tabulated in Table 5. For 200, 360 and

520 seconds after Liftoff, the introduction of explicit guidance causes no signi-

ficant reduction in stability margins. For the second of these flight times, the

rigid body phase margin is lower than desirable both with and without explicit

guidance, but this fact is traceable to the control system design, not any charac-

teristic of the guidance scheme.

For 560 seconds after Liftoff, there is considerable degradation of vehicle

stability characteristics. Though the high-frequency rigid body gain margin is

not significantly altered, both the low-frequency gain margin and the rigid body

phase margin are reduced to very low levels.
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Values of Linearized Guidance Loop Coefficients

T (time after K (sec/ft) K (ft -I)
Llftoff-sec ) v p

200 ........ -.198(io'3) . -.958(lO"6)

360 . -. 381(10 -3)

520

56o

_.24o(io-3)

_.903(lO-2)

_._6S(lO-5)

-.50_ ( o-5
-.233(10 -2 )

Table 4. System Stability Margins for a Vehicle

Incorporating Explicit Guidance

T(tlme after

Liftoff-sec)

200

360

_2o

%0

Low-frequency Gain
Margin (db)

Rigid Body Phase

22.

7.0

9.7

_.0

Margin (deg)

_.0

22.2

28.8

2k.8

High-frequency Rigid

Body Gain Margin (db)

21.S

_!'5

29.0

27.9

Table 5. Changes in System Stability Margins Caused by

Incorporation of Explicit Guidance

T(time after

Llftoff-sec)

Change in

Inw-frequency Gain
Margin (db)

Change in

Rigid Body Phase

Margin (deg)

Change in

High-frequency Rigid

Body Gain Margin (db)

, , , ,,, , ,

200 0.0 0.0 0.0

-0.i

-0.i

-6.8

-0.3 .

-0.7

-7.7560

-0.I
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However, several special considerations rest be recognized in a discussion

of results for a flight time so late in the mission. The first is that MECO nomi-

nally occurs just 6.25 seconds later. Also, the explicit guidance scheme dis-

continues updating of commands five seconds before MECO, or only 1.25 seconds after

the flight time under consideration. When the guidance commands are no longer

updated, the stability characteristics revert to those for a vehicle _ithout closed

loop guidance. For 560 seconds after Liftoff, the latter margins are satisfacto_:.

Consequently, although the stability characteristics for a vehicle _Tith

explicit guidance are poor at 560 seconds after Liftoff, they are applicable only

for a very short period of time. This is significantly different from the more

usual situation in which stability characteristics change only very slowly _rith

flight time and poor stability margins are likely to have more serious consequences.

Furthermore, the primary assumption upon which these linear analyses were

based is considerably less Justifiable for an Atlas/Centaur _ith explicit guid-

ance near MECO than for the other situations treated. It was always assumed that

the linearized coefficients change at frequencies much'lower than the frequencies

of interest. However, as can be seen from Table S, the coefficients of the guid-

ance loop change comparatively rapidly late in flight (for reasons discussed in

Appendix C in connection with the derivation of the literal expressions for the

coefficients), and the assumption of quasi-constant linearized coefficients was

more dubious than usual. The significance of stability margins was therefore

reduc ed.

Because of these considerations, the effects of the incorporation of explicit

guidance were Judged tolerable for 560 seconds after Liftoff, because the analysis

showed that instability does not result. For the other flight times, the effects

were found acceptable because the stability characteristics were altered very

little by the inclusion of explicit guidance.

_. Determination of the Minimum Allo_ble Sampling Frequency

In the analyses explained above, the representation of the guidance loop

_as continuous; the guidance commands were assumed to be updated instantaneously.

In fact, the commands are computed digitally and are updated only at intervals.
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Also, the computer requires a finite time to process infornmtion to generate

updated commands. Both effects cause degradation of system stability characteris-
tics.

Incorporation of explicit guidance causes very little change in vehicle
stability for 200, 360 and 520 seconds after Liftoff, and the addition of the

above two effects to the system models was expected to cause very little more

for realistic values of sampling frequency and computation time. Consequently,

the flight time nearest MECOwasinvestigated further for determination of the
minimumallowable sampling frequency.

A sampled-data simnlaticn was used for this purpose. It is capable of

representing both the continuous nature of the vehicle control system and dynamics

and the digital nature of the guidance loop. The computatlonal_lay was estimated

at 0.5 seconds and used throughout. Five sampling periods (lengths of intervals

between guidance commandupdatlngs) were selected for study and were intended

to cover the range of reasonable possibilities. They were l, 2, 5, lO and 20
seconds.

Any sampling period _ms considered acceptable which did not result in

instability for 560 seconds after Liftoff, in accordance with the reasons which

lead to the earlier conclusion that the effects of explicit guidance are tolerable

for that flight time. Figures 12 through 16 are vehicle stability portraits

for the five sampling periods tested. They showthat the system is stable _r

periods of l, 2 and 5 seconds, but unstable for values of lO and 20 seconds,

Figures 12 through 16 are gain-phase plots of the frequency responses of the

transfer functions from commandedvehicle body angle to output of the guidance

loop. This is a different transfer function from the one used to draw the gain-

phase plots discussed previously. Consequently, the general shapes of the curves
for the two sets of gain-phase plots differ markedly, and the stability margins

have different meanings. However, this is not important, because all that was

}2nted from the second set _msan indication of whether the systems including ex-

plicit guidance and sampling effects are stable.

A comparison of the five plots showsthat the _ximum allo_mble sampling

period is bet_en 5 and 10 seconds, very likely only slightly greater than the

former value. Five secondsmaybe taken as the _ximum allo_mble period.
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G, Summary

The first portion of the analysis was devoted to study of the guidance-

control interface problems under the assumption of continuous updating of guid-

ance commands. It was found that incorporation of explicit guidance results in

very little degradation of system stability for all flight times but those close

to MECO. Near MECO, there is considerable reduction of important stability

margins, but the vehicle remains stable even for those times of flight.

The second portion was an investigation of the effects on system stability

of the digital nature of the guidance computations. These effects are important

only for flight times near ME CO; for 560 seconds after Liftoff, the vehicle is

stable for sampling periods of 5 seconds or shorter, but unstable for periods

longer than 5 seconds.
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A. Linearized Vehicle Dynamics Equations

In this appendix the dynamics equations used in support of the stability

analyses described in Sections III and IV are presented. Although the total

dynamics equations are nonlinear with time-varying coefficients, they were

linearized for control systems analyses, and the system was studied for fixed

times of flight. Two sets of linearized launch vehicle dynamics equations are

included below. The first is for the more general situation for which areo-

dynamic forces are significant. The second set can be obtained directly from

the first; it applies only to the exoatmospheric case which includes all of

the Atlas sustainer and Centaur phases.

o General Case

The equations listed below describe the perturbed vehicle pitch plane

rigid body dynamics for the general case in which aerodynamics are significant.

The important variables are illustrated in Figure A-I. The fifth equation in

the list accounts for the fact that the inertial platform is displaced from

the vehicle center of gravity. This set of vehicle dynamics equations is

typical of those used in linear analyses:

"z
r

= _c6 + _aO_ (moment equation)

= ac6 - a_T - a# , (translational equation)

a a

• I (a, cosS) --_ c_ # (normal force_V = _ + _ 6 _ - g _V " V _T - V equation)

=

z.rm= Z- pSr

where the variables are defined as follows:

= vehicle body angle (tad)

8 = actual engine angle (rad)

_T = total effective angle of attack (rad)
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_V = actual vehicle angle of attack (tad)

_W = equivalent wind angle of attack (tad)

z
r

= distance of vehicle center of gravity normal to reference axis

from nominal point in the pitch plane (ft)

rm
= distance (as measured in vehicle guidance loop) of vehicle center

of gravity normal to reference axis from nominal point in the

pitch plane (ft)

The parameters involved in the above four equaticas are defined by these

relations:

_c = Tc_/I

_ = F_JI

= T/M
ac c

a, = (T-D)/M

where:

M

I

T

T
c

F

D =

V =

g =

= vehicle mass (slugs)

= vehicle inertia about pitch axis (slug-ft 2)

= total thrust (ib)

= control thrust (ib)

= aerodynamic force per unit total angle of attack (ib/rad)

vehicle drag force (ib)

vehicle velocity (ft/sec)

acceleration of gravity (ft/sec 2)

_c = distance parallel to roll axis between vehicle center of

gravity and engine gimbal point (ft)

_ = distance parallel to roll axis between vehicle center of

gravity and vehicle center of pressure (ft)

= distance parallel to roll axis between vehicle center of gravity

and vehicle inertial platform (ft)

= nominal vehicle flight path angle (tad)
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o Exoatmospheric Case

The second set of linearized launch vehicle dynamics equations applies

only to the exoatmospheric case. This set is a simplified version of the

first list. The aerodynamic parameters, a_ and _a3 become zero, which elimi-

nates the need for computing angle of attack. Also, the parameters ac and a_

become identical, because the drag force goes to zero and the control thrust

equals the total vehicle thrust. The result is a group of only three equations,

as compared with the five previously required:

= _C5

_r = ac5 " ac_

Zrm = Zr-_ _,
P

where both the variables and parameters are defined as above. Figure A-2 is

a block diagram representation of these relations expressed in Laplace Trans-

form notation.

_C

2
s

I

L

Ah_

w

&
C

&

c s2
--_ ( -_c )
8

Zr(S)

ZrJS )
m_

uw

Figure A-2. Block Diagram Representation of

Exoatmospheric Vehicle Dynamics
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B. Gain-Phase Plots For Launch Vehicles During Exoatmospheric Flight

This appendix presents a brief discussion of the use of gain-phase plots

for launch vehicle stability analyses. It concentrates particularly on their

utility for treatment of flight times during exoatmospheric phases.

The gain-phase plot is a graph of the frequency response of a system

open-loop fee&forward transfer function. The coordinates are the gain and

phase of the frequency response, with input frequency as a parameter. Though

the plot is drawn for an open-loop transfer function, its features have signi-

ficance in terms of system closed-loop stability, Just as do the features of

the Bode plot. In fact, a gain-phase plot is actually a Bode plot expressed

in terms of two orthogonal coordinates.

The transfer function generally used in control system analysis and syn-

thesis is from commanded engine actuator angle to control system output.

Figure B-I shows schematically the relationship of these two variables and the

relative positions of all components of the system in the fee&forward loop.

Figure B-2 is a typical gain-phase plot for this transfer function for a launch

vehicle or missile operating above the atmosphere.

If the system is to be stable when operating in the closed-loop mode, the

origin must always be on the right of the trace as it is traversed from low to

high input frequencies. Moreover, it is not enough that the system be stable;

to insure adequate vehicle response characteristics, certain minimum levels

should be maintained for the various stability margins.

Generally, there are no more than three important stability margins for

flight outside the atmosphere. They are low-frequency gain margin, rigid body

phase margin, and high-frequency rigid body gain margin, all of which are

defined in Figure B-2. For each time of flight treated, each gain margin should

be 6 decibels or greater, and the rigid body phase margin should be at least

30 degrees. For vehicles which do not include integrators in their control

systems for exoatmospheric flight, there exists no low-frequency gain margin.
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A

B mASS(deg)

C

Legend

A - Low-frequency Gain _rgi

B-Rigld Body Phase Margin

C - High-frequency Rigid

Body GainMargin

Figure B-2. Typical Gain-phase Plot for Launch Vehicle

During Ex_atmospheric Flight
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The exoatmospheric case is considerably simpler than the atmospheric

situation, for which there is a greater number of significant stability mar-

gins. In the latter case, bending, engine actuator nonlinearities, and slosh

are important and must be included in the analysis. In the former case, such

modes can usually be neglected, as they generally cause only very minor modi-

fications in vehicle stability portraits.
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C. Linearization of Explicit Guidance Equations

This appendix presents the linearization of the explicit guidance equations.

The result is a linear, constant coefficient differential equation which describes

the small-angle behavior of the guidance scheme. With the perturbed equations

for the vehicle dynamics and control system, it was used in conjunction with con-

ventional linear analysis techniques to obtain system stability portraits for an

Atlas/Centaur vehicle incorporating explicit guidance.

o As suml_ti,ons

Several simplifying assumptions were used during the linearization. Their

utility can be understood through a brief discussion of the essentials of the

guidance scheme.

At the end of each guidance cycle, the explicit guidance equations produce

a commanded orientation expressed in an inertial coordinate frame. The Centaur

resolver chain translates this and the actual vehicle orientation into error sig-

nals in body axes. The equations also yield an estimate of the remaining burn arc

required for injection into the prespecified orbit; the estimate is expressed as

the difference in true anomaly between the present vehicle position and the pre-

dicted vehicle position at MECO. The vehicle anomaly at MECO is not fixed as this

set of guidance equations is intended to place the payload in a prespecified

orbit, but not at any prespecified point or time. This burn arc estimate is used

as the starting point for the computations of the next guidance cycle.

For the purposes of analysis, however, it was assumed that the true anomaly

at injection is constant. Any change in the burn arc remaining is attributed to

change in vehicle position. While this is not strictly true, the frequencies at

which the commanded injection conditions change are expected to be low, consi-

derably lower than the system frequencies of interest.



65.9352.8-1o4
Page 40

Another important assumption is that the Centaur acceleration also changes

very slowly. In the explicit guidance equations, that quantity is not measured;

it is computedas a function of the velocity consumed. However, in the linearized

analyses, it was treated as a constant.

o Linearlzation

Figure 8 of Reference i includes most of the equations involved in the gui-

dance-control interface as limited by the above assumptions. This diagram is com-

plicated by the fact that it is very general and includes some equations not

applicable to the Atlas/Centaur problem. It also includes equations which, after

linearization, affect only the yaw plane. Figure C-1 includes only the equations

necessary for the Atlas/Centaur pitch-plane analysis, though they are not in per-

turbed form.

The independent variables in Figure C-l, those which are independent where-

v and z. They are defined as fol-
ever they appear in the diagram, are Vg, Vx, z

lows:

v = velocity-to-go during remainder of Centaur flight
g

v = horizontal component of vehicle in-plane velocity
x

v = vertical component of vehicle In-plane velocity
z

z = vehicle distance from center of earth

This reflects the fact that the explicit guidance scheme is conceptually based

on a local vertical coordinate frame, illustrated in Figure C-2. The commanded

vehicle orientation in the pitch plane is given by the direction cosine Caz:

C
az

= direction cosine of the angle between the local vertical

and the commanded vehicle roll axis.

The above variable is the lone completely independent quantity in the dia-

gram and is directly related only to: (1) distance from the center of the earth;

(2) the horizontal component of the vehicle in-plane velocity; and (3) the
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B = steering coefficient

KI9= exhaust velocity of Centaur

rD = desired radius at injection

rD = desired radial velocity at injection

T = time-to-go until sustainer burnout
s

8 = reciprocal of thrust acceleration

= universal gravitational constant times mass of earth

Figure C-I. Computational Flow Diagram for the
Pitch Plane Case
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Local

Vertical

Actual Vehicle

Roll Axis Orientation

l

l

Nominal Vehicle

Roll Axis Orientation

1

Vehicle Center

of Gravity

v X

f
I

l
l

l

J

Figure C-2. Local Vertical Coordinate System

Used in Explicit GuidJLnce Equations
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steering coefficient B.

by:

dc =
az

The total differential for the direction cosine is given

_az + az az

_-- avx Wdz+w_
X

The steering coefficient B is itself directly dependent on three quantities,

two of which are independent variables in the diagram of Figure C-l. They are:

(I) the vertical component of vehicle in-plane velocity; and (2) vehicle distance

from the center of the earth, The third quantity is defined as follows:

T = time-to-go until MECO

The total differential for the steering coefficient B is:

dB = _7- dv + dz + dTZ
Z

Substitution yields :

dv + az _z + + dzdCaz = x _--- dVz

az

+-_- _ dT

The time-to-go until MECO is directly dependent Just on velocity-to-go

during present phase of flight, and the total differentials for these two vari-

ables are related by:

dT = _ dv g
g

Consequently, the total differential of the direction cosine can be expressed as:



_Caz
dc = _ dv +

az _vx x

Y_Caz _Caz _B I

_Caz _B dvz___.__ _B _Z_B _vz + J

65.9352.8-i04

_Caz 5B 5T
dz +-- -- dv

_B 5T _Vg g

However, the velocity-to-go during the Centaur phase of flight is a function only

of the horizontal and vertical components of vehicle in-plane velocity. For

Centaur phase, the equation is:

- "_xf)2÷ (_z" Vzf)2

where Vxf and Vzf express the desired vehicle velocity at MECO in the local

vertical coordinate frame for the present time of flight. For sustainer flight,

the equation is identical except that the nominal vehicle velocity at SECO is

subtracted from the right-hand side. The total differential of velocity-to-go is:

dv = _Vg dv + _vg dv

g _vx x _vz z

In the linearized equations describing the vehicle control system, commanded

vehicle attitude is stated in terms of an angle:

#c = commanded vehicle body angle (rad)

Its zero point corresponds to the nominal vehicle attitude, and it depends only

on the direction cosine c :
8Z

_c

d#c = _Caz dCaz

When several of the above relations are appropriately combined, the total

differential of the linearized flight path angle can be expressed in the follow-

ing general terms:
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This expression is a function of differentials of quantities expressed in

the local vertical coordinate frame. For a representation of the entire guidance

loop, it must be a function of differentials of quantities defined in body coor-

dinates. The transformation in the pitch plane from body axis to a local verti-

can set can be written very generally as:

W = _ii TI_

With the inclusion of the above transformation, the equatbn describing

the guidance loop assumes the following form when written in Laplace Transform

notation :

A
 cCS) = (%s + kp)  mCs)

where the variable on the right-hand side is as defined in Appendix A and the

linearized guidance loop coefficients, kp and kv, are given by:



kp = T22 _az
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These coefficients must now be written in more specific terms. The follow-

ing expressions are easily derived from equations presented earlier or contained

in Figure C-l:

az x

Z
X

&
az

T
Z

rD - 2)-2-T2 _D+2vz-6_

g 59

vx - Vxf
_S : v

x g

_" v z - Vzf

z g
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The remaining partial derivative and the elements of the transformation are ex-

panded as follows in accordance with the definitions of polarity included in

Figure C-2:

_c

= esc
az

TI2 ffi cos

T22 = -sin

The linearized guidance loop coefficients can now be written in terms of

vehicle state variables:

. [ vkv ffi28 cot _ + -- + 2 v - 6 rD z_ 1 - -_-
z _ 2 z • _ K_

g

+ _ [(v x -Vxf)cot _- (vz - Vzf)] }

This completes the linearization of the explicit guidance equations for the pitch

plane case.

In Table 3 of Section IV, it is seen that, when the above expressions are

evaluated for particular flight times, the resulting linearized coefficient values

become relatively vory large for flight times near MECO. The reason for this is

contained in the above equations. As the vehicle nears MECO, the terms which in-

volve inverse powers of time-to-go until MECO tend toward infinity. So do the

values of the linearized guidance loop coefficients, since both the above expres-

gons contain at least one such term.
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On the basis of the results of this preliminary study, it is concluded that

the effects on vehicle stability of incorporation of the explicit guidance scheme

are acceptable if the guidance commands are updated every 5 seconds or more fre-

quently.

Further studies should be more detailed in several aspects:

(I) when the classes of trajectories have been delineated more speci-

fically, several representative missions should be selected and simi-

lar analyses performed to corroborate the assumption that the results

are not trajectory dependent;

(2) the vehicle dynamics equations should be modified to include bending

and sloshing to verify the assumption that there exists little inter-

action between the guidance loop and these modes;

(3) a time-varying simulation should be conducted and the resulting time

responses examined to determine the consequences of possible low sta-

bility margins for flight times very close to MECO.



APPENDIX B

DERIVATION OF ORBIT PARAMETERS, FROM THE MISSION CONSTRAINTS

C 3, R , "_ FOR ESCAPE HYPERBOLAP

ae CONIC PARAMETERS (a, e, p)

For a hyperbola the following two relations are well known,

p = a (ez - I)

Rp = a(e- I)

from which

a

R
- P

e - 1

Combining (1A), (ZA), and (3A) and noting that for a conic

h z = _p

we get

h z
e -

_R
P

-1

Now, at perigee

h z = Rp z Vp z

where from vis-viva

and at infinity

Combining (6A), (7A), and (8A)

C 3

h z = ZRp_+ Rp z C 3

(IA)

(ZA)

(3A

(4A)

(5A)

(6A)

(7A)

(8A)

(9A)

B-I



and substituting this into (SA)

R C 3
e : 1+ P

Also substituting (8A) into (IA) we get

(ez - l)
p =

C 3

Thus (8A), (10A), (11A) provide a, e, and p from Rp and C 3

B. DIRECTION OF PERIGEE (iRp)

Let e be the acute angle between- and ;. Then
_Rp

iRpX; =  sine

If both sides of (12A) are crossed with i

; x (]Rp x ;) = ;xyslnO

or employing the familiar vector identity for trlple cross products,

(13A) becomes

-IRp - s (s . i_._) = s xjcos 8

But

Thus

where,

s • IRp = - cos e

[Rp = _xYsine-_cos e

for a hyperbola

(10A)

(llA)

(lZA)

(13A)

(14A)

(15A)

(16A)

(17A)

B-Z



APPENDIX C

DERIVATION OR ORBIT PARAMETERS FROM THE MISSION CONSTRAINTS

R T, V T AND R FOR TRANSLUNAR ELLIPTIC TRAJECTORIESP

A. CONIC PARAMETER (a, e, p)

Repeating steps similar to (1A) through (5A) in Appendix

readily be shown for an ellipse.

A it can

h 2
e - 1 (]B)

_R
P

Noting again that

h 2 = R 2V 2 (6A)
P P

we get

2
R V

e - P P - 1 (2B)

From the vis-viva law,

2 2_

Vp _-- a
P

(3B)

and

2 2_

VT = R--T - a
(4B)

When (ZB), (3B) and (4B) are combined the expression for e is

[R_T VTZ (5B)e = I-Rp - }_

Now from (4B) 'a' can be obtained and then 'p' can be computed from

p = a(l-e z) (6B)

C-I



Be

DIRECTION OF PERIGEE, (LRp)

Referring to Figure IB, and the more generalized vector diagram

(ZB) we can express Rp in terms of RT and V T as

RT VT

_ : _ "_ (7B)

LUNAR SPHERE

OF INFLUENCE

Figure 1B

P

m

RT

Figure ZB

C-2



From the law of sines

b Rp

sin fT sin (90 - F)
(8B)

or

R sin fT
b = P (9B)

cos F

A/so we have from Figure 2B

a = R cos f + b sin F (10B)
P

Thus, putting (9B) and (10B) into (7B) yields

R
P sin F RT [ sin fT _]Rp [cosfT+ sinfT_-_os_l _TT " Rp _o-os_

(liB)

or

= -- cos (fT F) - sin f
IRP cos - RT _TT

Now, from Figure 1B)

= sin'l [ RTRT'vTVT I

and from the polar equation of the ellipse

Thus with (13B) and (14B), - is defined.
iRp

(izB)

(13B)

(l14B)

C-3



APPENDIX D

ANGLE BETWEEN PERIGEE AND OUTWARD
ASSYMPTOTE OF ESCAPE HYPERBOLA

If 'a' is one half the transverse axis and tb' is one half the conjugate

axis the angle ft' between the transverse axis and an assymptote is given

by

fT = tan b (IA)

Now, for a hyperbola the, eccentricity, e, is

e --

a + b 2

a
(2a)

or

2 b 2 2f T
e - 1 - 2 - tan

a

(3a)

If 'p' is the semi-latus rectum, then it can be shown that

P = e 2 - 1 (4a)
e

Substituting 4a into 3a we have

ft = tan'l _ (Sa)

Since we are interested in the angle between the perigee vector and the

outward assymptote, the angle, fT' is given by

fT = 180 - tan'l_a

D-1



APPENDIX E

TABULATION OF INPUTS FOR EACH MISSION

Below are tabulated the inputs associated with these guidance equations,

for each mission. With these inputs the maneuver proceeds automatically

to completion of the Centaur Guidance role.

A. INPUTS COMMON TO ALL PROPOSED MANEUVERS

K 6 K16 KZ7 - K48

K 7 K17 K51

KII KI8 a s

KIZ KI9 Atf

tll
KI4 KZ0

U_

KI5 K21 _ =
k =

1

O

B. INPUTS FOR SPECIFIED EARTH ORBIT IN ADDITION TO A

_" = o circular orbit _ = -I
KZ 3 IRp

K24 # o elliptic orbit v = o
m

KZ5 j TT = o

C. INPUTS FOR INTERPLANETARY MISSION IN ADDITION TO A

(I BURN)

- _ = l
KZ 3 IRp

m

KZ4 s v = o

T

KZ5 j TT = o

D. INPUTS FOR PRE-TARGETED LUNAR MISSION IN ADDITION

TO A (I BURN)

KZ 3 IRp

KZ4 rT

KZ5 J

V = O

TT = o

E-I



mo

mo

Go

INPUTS FOR INTERPLANETARY MISSION IN ADDITION TO A

(Z BURN)

KZ3, K231 fT KII5

KZ4, KZ4, ST tT = i

KZS, KZ 5, KI00 bb = o

-- "-- Ka

IRp, IRp' KZ00

KI10

= i

= -I

s KZI0 v = o

INPU

TO A (Z BURN)

TS FOR PRE-TARGETED LUNAR MISSION IN ADDITION

KZ3' KZ3' fT K115

KZ4, KZ4' sT _ =
-I

KZ5, KZS'

iRp, IRp'

J

m

rT

K1 v = o00

TT = 1

KZ00

MA = o

KllO
bb = o

K210 aa = Z

INPUTS FOR RENDEZVOUS MISSIONS AND IN-FLIGHT TARGETED

LUNAR MISSIONS IN ADDITION TO A (I BURN)

K 1 K 5 K30

K z KI0
v = I

K 3 KI5
TT = o

E-Z



H. INPUTS FOR RENDEZVOUS MISSIONS AND IN-FLIGHT TARGETED

LUNAR MISSIONS IN ADDITION TO A (Z BURN)

K1 KZ3 . J

= -1

K 2 K24

v = O

K 3 KZ5

TT = 1

K5 K30 M A = 1

KI0 KII5 bb = o

KI3 IRp aa = o

J. INPUTS FOR COM-SAT MISSION IN ADDITION TO A (3 BURN)

l -- 71

K I KZ3, KZ3 J, J

K2 K24, K24, _ = -I

%' = O

K 3 K25, K25'

TT = 1

K5 K30 M A = 3

KI0 KII5 bb = o

KI3 iRp ' iRp ' aa = o

E-3


